Runge-Metzger A. Closing the cycle: obstacles to efficient P management for improved global food security. Phosphorus Glob Environ. 1995;54:27–42.
Google Scholar
van de Wiel CCM, van der Linden CG, Scholten OE. Improving phosphorus use efficiency in agriculture: opportunities for breeding. Euphytica. 2016;207(1):1–22.
Article
Google Scholar
Vance CP, Uhde-Stone C, Allan DL. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 2003;157(3):423–47.
Article
CAS
PubMed
Google Scholar
Bates TR, Lynch JP. Root hairs confer a competitive advantage under low phosphorus availability. Plant Soil. 2001;236(2):243–50.
Article
CAS
Google Scholar
Drew MC. Comparison of the effects of a localised supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol. 1975;75(3):479–90.
Article
CAS
Google Scholar
Wang L, Liao H, Yan X, Zhuang B, Dong Y. Genetic variability for root hair traits as related to phosphorus status in soybean. Plant Soil. 2004;261(1/2):77–84.
Article
CAS
Google Scholar
Lynch JP. Roots of the Second Green Revolution. Aust J Bot. 2007;55(5):493.
Article
Google Scholar
Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil. 2001;237(2):173–95.
Article
CAS
Google Scholar
Smith SE, Read DJ. Mycorrhizal symbiosis. books.google.com; 2010.
Google Scholar
Jakobsen I, Chen B, Munkvold L, Lundsgaard T, Zhu Y-G. Contrasting phosphate acquisition of mycorrhizal fungi with that of root hairs using the root hairless barley mutant. Plant Cell Environ. 2005;28(7):928–38.
Article
CAS
Google Scholar
Wang B, Qiu YL. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza. 2006;16(5):299–363.
Article
CAS
PubMed
Google Scholar
Dunne MJ, Fitter AH. The phosphorus budget of a field-grown strawberry (Fragaria x ananassa cv. Hapil) crop: evidence for a mycorrhizal contribution. Ann Applied Biol. 1989;114(1):185–93.
Robinson Boyer L, Feng W, Gulbis N, Hajdu K, Harrison RJ, Jeffries P, et al. The use of arbuscular mycorrhizal fungi to improve strawberry production in coir substrate. Front Plant Sci. 2016;7:1237.
Article
PubMed
PubMed Central
Google Scholar
Güneş A, Ataoğlu N, Turan M, Eşitken A, Ketterings QM. Effects of phosphate-solubilizing microorganisms on strawberry yield and nutrient concentrations. Z Pflanzenernähr Bodenk. 2009;172(3):385–92.
Article
CAS
Google Scholar
Zhang L, Xu M, Liu Y, Zhang F, Hodge A, Feng G. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol. 2016;210(3):1022–32.
Article
CAS
PubMed
Google Scholar
Holevas CD. The effect of a vesicular-arbuscular mycorrhiza on the uptake of soil phosphorus by strawberry (Fragaria Sp. Yar. Cambridge Favourite). J Hort Sci. 1966;41(1):57–64.
Boyer LR, Brain P, Xu X-M, Jeffries P. Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency. Mycorrhiza. 2015;25(3):215–27.
Article
CAS
PubMed
Google Scholar
Williams SCK, Vestberg M, Uosukainen M, Dodd JC, Jeffries P. Effects of fertilizers and arbuscular mycorrhizal fungi on the post-vitro growth of micropropagated strawberry. Agronomie. 1992;12(10):851–7.
Article
Google Scholar
Niemi M, Vestberg M. Inoculation of commercially grown strawberry with VA mycorrhizal fungi. Plant Soil. 1992;144(1):133–42.
Article
Google Scholar
Bona E, Lingua G, Manassero P, Cantamessa S, Marsano F, Todeschini V, et al. AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza. 2015;25(3):181–93.
Article
CAS
PubMed
Google Scholar
Castellanos-Morales V, Villegas J, Wendelin S, Vierheilig H, Eder R, Cárdenas-Navarro R. Root colonisation by the arbuscular mycorrhizal fungus Glomus intraradices alters the quality of strawberry fruits (Fragaria x ananassa Duch.) at different nitrogen levels. J Sci Food Agric. 2010;90(11):1774–82.
Lingua G, Bona E, Manassero P, Marsano F, Todeschini V, Cantamessa S, et al. Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria x ananassa var. Selva) in conditions of reduced fertilization. Int J Mol Sci. 2013;14(8):16207–25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Norman JR, Atkinson D, Hooker JE. Arbuscular mycorrhizal fungal-induced alteration to root architecture in strawberry and induced resistance to the root pathogen Phytophthora fragariae. Plant Soil. 1996;185(2):191–8.
Article
CAS
Google Scholar
Stewart LI, Hamel C, Hogue R, Moutoglis P. Response of strawberry to inoculation with arbuscular mycorrhizal fungi under very high soil phosphorus conditions. Mycorrhiza. 2005;15(8):612–9.
Article
CAS
PubMed
Google Scholar
Sinclair G, Charest C, Dalpé Y, Khanizadeh S. Influence of colonization by arbuscular mycorrhizal fungi on three strawberry cultivars under salty conditions. Ag Food Sci. 2014;23(2):146–58.
Article
Google Scholar
Wong JW-H, Plett JM. Root renovation: how an improved understanding of basic root biology could inform the development of elite crops that foster sustainable soil health. Funct Plant Biol. 2019;46(7):597–612.
Article
PubMed
Google Scholar
Hodge A. The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol. 2004;162(1):9–24.
Article
Google Scholar
Williamson LC, Ribrioux SP, Fitter AH, Leyser HM. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol. 2001;126(2):875–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ho MD, Rosas JC, Brown KM, Lynch JP. Root architectural tradeoffs for water and phosphorus acquisition. Funct Plant Biol. 2005;32(8):737.
Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS. Responses of root architecture development to low phosphorus availability: a review. Ann Bot. 2013;112(2):391–408.
Article
CAS
PubMed
Google Scholar
Linkohr BI, Williamson LC, Fitter AH, Leyser HMO. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J. 2002;29(6):751–60.
Fitter A, Williamson L, Linkohr B, Leyser O. Root system architecture determines fitness in an Arabidopsis mutant in competition for immobile phosphate ions but not for nitrate ions. Proc Biol Sci. 2002;269(1504):2017–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Šmilauerová M, Šmilauer P. What youngsters say about adults: seedling roots reflect clonal traits of adult plants. J. Ecol. 2007;95(3):406–13.
Article
Google Scholar
Berntson GM. Modelling root architecture: are there tradeoffs between efficiency and potential of resource acquisition? New Phytol. 1994;127(3):483–93.
Article
Google Scholar
Zurek PR, Topp CN, Benfey PN. Quantitative trait locus mapping reveals regions of the maize genome controlling root system architecture. Plant Physiol. 2015;167(4):1487–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tawaraya K. Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Sci Plant Nutr. 2003;49(5):655–68.
Article
Google Scholar
Hetrick BAD. Mycorrhizas and root architecture. Experientia. 1991;47(4):355–62.
Article
Google Scholar
Maherali H. Is there an association between root architecture and mycorrhizal growth response? New Phytol. 2014;204(1):192–200.
Article
PubMed
Google Scholar
Topp CN, Iyer-Pascuzzi AS, Anderson JT, Lee C-R, Zurek PR, Symonova O, et al. 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture. Proc Natl Acad Sci USA. 2013;110(18):E1695–704.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ogutu RA, Williams KA, Pierzynski GM. Phosphate sorption of calcined materials used as components of soilless root media characterized in laboratory studies. HortScience. 2009;44(2):431–7.
Article
Google Scholar
López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L. The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol. 2003;6(3):280–7.
Article
PubMed
CAS
Google Scholar
Thibaud M-C, Arrighi J-F, Bayle V, Chiarenza S, Creff A, Bustos R, et al. Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. Plant J. 2010;64(5):775–89.
Article
CAS
PubMed
Google Scholar
Negi S, Ivanchenko MG, Muday GK. Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J. 2008;55(2):175–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pitts RJ, Cernac A, Estelle M. Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J. 1998;16(5):553–60.
López-Arredondo DL, Leyva-González MA, González-Morales SI, López-Bucio J, Herrera-Estrella L. Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol. 2014;65:95–123.
Article
PubMed
CAS
Google Scholar
Xu J, Scheres B. Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 function in epidermal cell polarity. Plant Cell. 2005;17(2):525–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Péret B, Desnos T, Jost R, Kanno S, Berkowitz O, Nussaume L. Root architecture responses: in search of phosphate. Plant Physiol. 2014;166(4):1713–23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cockerton HM, Li B, Vickerstaff RJ, Eyre CA, Sargent DJ, Armitage AD, et al. Identifying Verticillium dahliae resistance in strawberry through disease screening of multiple populations and image based phenotyping. Front Plant Sci. 2019;10:924.
Article
PubMed
PubMed Central
Google Scholar
Kimura K, Kikuchi S, Yamasaki S. Accurate root length measurement by image analysis. Plant Soil. 1999;216(1):117–27.
Article
CAS
Google Scholar
Iyer-Pascuzzi AS, Symonova O, Mileyko Y, Hao Y, Belcher H, Harer J, et al. Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiol. 2010;152(3):1148–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
McGONIGLE TP, Miller MH, Evans DG, Fairchild GL, Swan JA. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 1990;115(3):495–501.
Article
PubMed
Google Scholar
Vickerstaff RJ, Harrison RJ. Crosslink: A fast, scriptable genetic mapper for outcrossing species. BioRxiv. 2017;8:135277.
Google Scholar
Team RC. R: A language and environment for statistical computing; 2015. Vienna: R Foundation for Statistical Computing; 2018.
Google Scholar
Cockerton HM, Vickerstaff RJ, Karlström A, Wilson F, Sobczyk M, He JQ, et al. Identification of powdery mildew resistance QTL in strawberry (Fragaria × ananassa). Theor Appl Genet. 2018;131(9):1995–2007.
Van Ooijen JW, Kyazma BV. MapQTL 6. Software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen: Kyazma BV; 2009.
Google Scholar
Peterson BG, Carl P. PerformanceAnalytics: Econometric tools for performance and risk analysis. PerformanceAnalytics: Econometric Tools for Performance and Risk Analysis; 2018.
Google Scholar
Butts C. Network: classes for relational data. The Statnet project; 2015.
Google Scholar
Almende BV, Thieurmel B, Titouan R. visNetwork: Network Visualization using “vis.js” Library. R; 2019.
Google Scholar
Edger PP, VanBuren R, Colle M, Poorten TJ, Wai CM, Niederhuth CE, et al. Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity. Gigascience. 2018;7(2):1–7.
Article
CAS
PubMed
Google Scholar