Malaivijitnond S. Medical applications of phytoestrogens from the Thai herb Pueraria mirifica. Front Med. 2012;6(1):8–21.
Article
PubMed
Google Scholar
Ososki AL, Kennelly EJ. Phytoestrogens: a review of the present state of research. Phytother Res. 2003;17(8):845–69.
Article
CAS
PubMed
Google Scholar
Ingham JL, Tahara S, Dziedzic SZ. A chemical investigation of Pueraria mirifica roots. Z Naturforsch C. 1986;41(4):403–8.
Article
CAS
Google Scholar
Cherdshewasart W, Subtang S, Dahlan W. Major isoflavonoid contents of the phytoestrogen rich-herb Pueraria mirifica in comparison with Pueraria lobata. J Pharm Biomed Anal. 2007;43(2):428–34.
Article
CAS
PubMed
Google Scholar
Cherdshewasart W, Sriwatcharakul S. Major isoflavonoid contents of the 1-year-cultivated phytoestrogen-rich herb, Pueraria mirifica. Biosci Biotechnol Biochem. 2007;71(10):2527–33.
Article
CAS
PubMed
Google Scholar
Veitch NC. Isoflavonoids of the Leguminosae. Nat Prod Rep. 2013;30(7):988–1027.
Article
CAS
PubMed
Google Scholar
Ingham JL, Tahara S, Dziedzic SZ. Coumestans from the roots of Pueraria mirifica. Z Naturforsch C. 1988;43(1–2):5–10.
Article
CAS
Google Scholar
Costa M, Dias TA, Brito A, Proença F. Biological importance of structurally diversified chromenes. Eur J Med Chem. 2016;123:487–507.
Article
CAS
PubMed
Google Scholar
Jones HE, Pope GS. A method for the isolation of miroestrol from Pueraria mirifica. J Endocrinol. 1961;22(3):303–12.
Article
CAS
PubMed
Google Scholar
Yusakul G, Putalun W, Udomsin O, Juengwatanatrakul T, Chaichantipyuth C. Comparative analysis of the chemical constituents of two varieties of Pueraria candollei. Fitoterapia. 2011;82(2):203–7.
Article
CAS
PubMed
Google Scholar
Cain JC. Miroestrol: an oestrogen from the plant Pueraria mirifica. Nature. 1960;188:774–7.
Article
CAS
PubMed
Google Scholar
Dixon RA, Achnine L, Kota P, Liu C-J, Reddy MSS, Wang L. The phenylpropanoid pathway and plant defence—a genomics perspective. Mol Plant Pathol. 2002;3(5):371–90.
Article
CAS
PubMed
Google Scholar
Wiriyaampaiwong P, Thanonkeo S, Thanonkeo P. Molecular characterization of isoflavone synthase gene from Pueraria candollei var. mirifica. Afr J Agric Res. 2012;7(32):4489–98.
Article
Google Scholar
Wiriyaampaiwong P, Thanonkeo S, Thanonkeo P. Cloning and characterization of chalcone synthase gene from Pueraria candollei var. mirifica. J Med Plant Res. 2012;6(42):5469–79.
CAS
Google Scholar
Udomsuk L, Juengwattanatrakul T, Jarukamjorn K, Putalun W. Increased miroestrol, deoxymiroestrol and isoflavonoid accumulation in callus and cell suspension cultures of Pueraria candollei var. mirifica. Acta Physiol Plant. 2011;34(3):1093–100.
Article
CAS
Google Scholar
Liu J, Osbourn A, Ma P. MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Mol Plant. 2015;8(5):689–708.
Article
CAS
PubMed
Google Scholar
Han R, Takahashi H, Nakamura M, Yoshimoto N, Suzuki H, Shibata D, Yamazaki M, Saito K. Transcriptomic landscape of Pueraria lobata demonstrates potential for phytochemical study. Front Plant Sci. 2015;6:426.
Wang X, Li S, Li J, Li C, Zhang Y. De novo transcriptome sequencing in Pueraria lobata to identify putative genes involved in isoflavones biosynthesis. Plant Cell Rep. 2015;34(5):733–43.
Article
CAS
PubMed
Google Scholar
Pang T, Ye C-Y, Xia X, Yin W. De novo sequencing and transcriptome analysis of the desert shrub, Ammopiptanthus mongolicus, during cold acclimation using Illumina/Solexa. BMC Genomics. 2013;14(1):488.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang J, Guo X, Hao X, Zhang W, Chen S, Huang R, Gresshoff PM, Zheng Y. De novo sequencing and characterization of seed transcriptome of the tree legume Millettia pinnata for gene discovery and SSR marker development. Mol Breed. 2016;36(6):75.
Article
CAS
Google Scholar
Liu Z, Chen T, Ma L, Zhao Z, Zhao PX, Nan Z, Wang Y. Global Transcriptome sequencing using the Illumina platform and the development of EST-SSR markers in Autotetraploid alfalfa. PLoS One. 2013;8(12):e83549.
Article
PubMed
PubMed Central
CAS
Google Scholar
Akashi T, Aoki T. Ayabe S-i: CYP81E1, a cytochrome P450 cDNA of licorice (Glycyrrhiza echinata L.), encodes isoflavone 2′-hydroxylase. Biochem Biophys Res Commun. 1998;251(1):67–70.
Article
CAS
PubMed
Google Scholar
Liu CJ, Huhman D, Sumner LW, Dixon RA. Regiospecific hydroxylation of isoflavones by cytochrome P450 81E enzymes from Medicago truncatula. Plant J. 2003;36(4):471–84.
Article
CAS
PubMed
Google Scholar
Overkamp S, Hein F, Barz W. Cloning and characterization of eight cytochrome P450 cDNAs from chickpea (Cicer arietinum L.) cell suspension cultures. Plant Sci. 2000;155(1):101–8.
Article
CAS
PubMed
Google Scholar
Shimada N, Akashi T, Aoki T. Ayabe S-i: induction of isoflavonoid pathway in the model legume Lotus japonicus: molecular characterization of enzymes involved in phytoalexin biosynthesis. Plant Sci. 2000;160(1):37–47.
Article
CAS
PubMed
Google Scholar
Guijas C, Montenegro-Burke JR, Domingo-Almenara X, Palermo A, Warth B, Hermann G, Koellensperger G, Huan T, Uritboonthai W, Aisporna AE, et al. METLIN: a technology platform for identifying Knowns and unknowns. Anal Chem. 2018;90(5):3156–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee JH, Kim JY, Cho S-H, Jeong JH, Cho S, Park HJ, Baek SY. Determination of miroestrol and isomiroestrol from Pueraria mirifica (white Kwao Krua) in dietary supplements by LC–MS-MS and LC–Q-Orbitrap/MS. J Chromatogr Sci. 2017;55(3):214–21.
CAS
PubMed
Google Scholar
Sainsbury F, Lomonossoff GP. Transient expressions of synthetic biology in plants. Curr Opin Plant Biol. 2014;19:1–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pandey A, Misra P, Khan Mohd P, Swarnkar G, Tewari Mahesh C, Bhambhani S, Trivedi R, Chattopadhyay N, Trivedi Prabodh K. Co-expression of Arabidopsis transcription factor, AtMYB12, and soybean isoflavone synthase, GmIFS1, genes in tobacco leads to enhanced biosynthesis of isoflavones and flavonols resulting in osteoprotective activity. Plant Biotechnol J. 2013;12(1):69–80.
Article
PubMed
CAS
Google Scholar
Chu S, Wang J, Zhu Y, Liu S, Zhou X, Zhang H. Wang C-e, Yang W, Tian Z, Cheng H et al: an R2R3-type MYB transcription factor, GmMYB29, regulates isoflavone biosynthesis in soybean. PLoS Genet. 2017;13(5):e1006770.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yi J, Derynck MR, Chen L, Dhaubhadel S. Differential expression of CHS7 and CHS8 genes in soybean. Planta. 2010;231(3):741–53.
Article
CAS
PubMed
Google Scholar
Li X-W, Li J-W, Zhai Y, Zhao Y, Zhao X, Zhang H-J, Su L-T, Wang Y, Wang Q-Y. A R2R3-MYB transcription factor, GmMYB12B2, affects the expression levels of flavonoid biosynthesis genes encoding key enzymes in transgenic Arabidopsis plants. Gene. 2013;532(1):72–9.
Article
CAS
PubMed
Google Scholar
Yi J, Derynck MR, Li X, Telmer P, Marsolais F, Dhaubhadel S. A single-repeat MYB transcription factor, GmMYB176, regulates CHS8 gene expression and affects isoflavonoid biosynthesis in soybean. Plant J. 2010;62(6):1019–34.
CAS
PubMed
Google Scholar
Yu O, Shi J, Hession AO, Maxwell CA, McGonigle B, Odell JT. Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry. 2003;63(7):753–63.
Article
CAS
PubMed
Google Scholar
Reuter Jason A, Spacek DV, Snyder Michael P. High-throughput sequencing technologies. Mol Cell. 2015;58(4):586–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Serres-Giardi L, Belkhir K, David J, Glémin S. Patterns and evolution of nucleotide landscapes in seed plants. Plant Cell. 2012;24(4):1379–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian A-G, Wang J, Cui P, Han Y-J, Xu H, Cong L-J, Huang X-G, Wang X-L, Jiao Y-Z, Wang B-J, et al. Characterization of soybean genomic features by analysis of its expressed sequence tags. Theor Appl Genet. 2004;108(5):903–13.
Article
PubMed
Google Scholar
Chansakaow S, Ishikawa T, Sekine K, Okada M, Higuchi Y, Kudo M, Chaichantipyuth C. Isoflavonoids from Pueraria mirifica and their estrogenic activity. Planta Med. 2000;66(06):572–5.
Article
CAS
PubMed
Google Scholar
Udomsin O, Juengwatanatrakul T, Yusakul G, Putalun W. Chromene stability: the most potent estrogenic compounds in white Kwao Krua (Pueraria candollei var mirifica) crude extract. J Funct Foods. 2015;19:269–77.
Article
CAS
Google Scholar
Mameda R, Waki T, Kawai Y, Takahashi S, Nakayama T. Involvement of chalcone reductase in the soybean isoflavone metabolon: identification of GmCHR5, which interacts with 2-hydroxyisoflavanone synthase. Plant J. 2018;96(1):56–74.
Article
CAS
PubMed
Google Scholar
Laursen T, Møller BL, Bassard J-E. Plasticity of specialized metabolism as mediated by dynamic metabolons. Trends Plant Sci. 2015;20(1):20–32.
Article
CAS
PubMed
Google Scholar
Bang M-H, Lee D-G, Baek Y-S, Cho J-G, Han M-W, Choi K-S, Chung D-K, Ko S-K, Oh C-H, Cho S-Y, et al. A new miroestrol glycoside from the roots of Pueraria mirifica. Chem Nat Compounds. 2013;49:443.
Article
CAS
Google Scholar
Yazaki K, Sugiyama A, Morita M, Shitan N. Secondary transport as an efficient membrane transport mechanism for plant secondary metabolites. Phytochem Rev. 2008;7(3):513–24.
Article
CAS
Google Scholar
Wang X, Li C, Zhou C, Li J, Zhang Y. Molecular characterization of the C-glucosylation for puerarin biosynthesis in Pueraria lobata. Plant J. 2017;90(3):535–46.
Article
CAS
PubMed
Google Scholar
Nielsen KA, Tattersall DB, Jones PR, Møller BL. Metabolon formation in dhurrin biosynthesis. Phytochemistry. 2008;69(1):88–98.
Article
CAS
PubMed
Google Scholar
Jørgensen K, Rasmussen AV, Morant M, Nielsen AH, Bjarnholt N, Zagrobelny M, Bak S, Møller BL. Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr Opin Plant Biol. 2005;8(3):280–91.
Article
PubMed
CAS
Google Scholar
Laursen T, Borch J, Knudsen C, Bavishi K, Torta F, Martens HJ, Silvestro D, Hatzakis NS, Wenk MR, Dafforn TR, et al. Characterization of a dynamic metabolon producing the defense compound dhurrin in sorghum. Science. 2016;354(6314):890.
Article
CAS
PubMed
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, et al. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–512.
Article
CAS
PubMed
Google Scholar
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2.
Article
PubMed
CAS
Google Scholar
Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, Kriventseva EV, Zdobnov EM. BUSCO applications from quality assessments to gene prediction and Phylogenomics. Mol Biol Evol. 2017;35(3):543–8.
Article
PubMed Central
CAS
Google Scholar
Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential expression in RNA-seq: a matter of depth. Genome Res. 2011;21(12):2213–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36(10):3420–35.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, et al. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res. 2006;34:W293–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8.
Article
CAS
PubMed
Google Scholar
Sainsbury F, Thuenemann EC, Lomonossoff GP. pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J. 2009;7(7):682–93.
Article
CAS
PubMed
Google Scholar