Broadley MR, White PJ, Hammond JP, Zelko I, Lux A. Zinc in plants. New Phytol. 2007;173(4):677–702.
Article
CAS
PubMed
Google Scholar
Li Y, Zhang Y, Shi D, Liu X, Qin J, Ge Q, Xu L, Pan X, Li W, Zhu Y, et al. Spatial-temporal analysis of zinc homeostasis reveals the response mechanisms to acute zinc deficiency in Sorghum bicolor. New Phytol. 2013;200(4):1102–15.
Article
CAS
PubMed
Google Scholar
Alloway B. Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health. 2009;31(5):537–48.
Article
CAS
PubMed
Google Scholar
Cakmak I. Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil. 2008;302(1–2):1–17.
CAS
Google Scholar
Brown KH, Rivera JA, Bhutta Z, Gibson RS, King JC, Lonnerdal B, Ruel MT, Sandtrom B, Wasantwisut E, Hotz C. International zinc nutrition consultative group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull. 2004;25(1 Suppl 2):S99–203.
PubMed
Google Scholar
Rose TJ, Impa SM, Rose MT, Pariasca-Tanaka J, Mori A, Heuer S, Johnson-Beebout SE, Wissuwa M. Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding. Ann Bot. 2012;112:331–45.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sinclair SA, Krämer U. The zinc homeostasis network of land plants. Biochimica et Biophysica Acta (BBA) – Mol Cell Res. 2012;1823(9):1553–67.
Article
CAS
Google Scholar
Ishimaru Y, Bashir K, Nishizawa NK. Zn uptake and translocation in rice plants. Rice. 2011;4(1):21–7.
Article
Google Scholar
White JG, Zasoski RJ. Mapping soil micronutrients. Field Crop Res. 1999;60(1):11–26.
Article
Google Scholar
Lee J-S, Sajise AGC, Gregorio GB, Kretzschmar T, Ismail AM, Wissuwa M. Genetic dissection for zinc deficiency tolerance in rice using bi-parental mapping and association analysis. Theor Appl Genet. 2017;130(9):1903–14.
Article
CAS
PubMed
Google Scholar
Cakmak I. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 2000;146(2):185–205.
Article
CAS
PubMed
Google Scholar
Impa SM, Johnson-Beebout SE. Mitigating zinc deficiency and achieving high grain Zn in rice through integration of soil chemistry and plant physiology research. Plant Soil. 2012;361(1):3–41.
Article
CAS
Google Scholar
Hacisalihoglu G, Hart JJ, Wang Y-H, Cakmak I, Kochian LV. Zinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in wheat. Plant Physiol. 2003;131(2):595.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cavagnaro T. The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review. Plant Soil. 2008;304(1–2):315–25.
Article
CAS
Google Scholar
Widodo B, Broadley MR, Rose T, Frei M, Pariasca-Tanaka J, Yoshihashi T, Thomson M, Hammond JP, Aprile A, Close TJ, et al. Response to zinc deficiency of two rice lines with contrasting tolerance is determined by root growth maintenance and organic acid exudation rates, and not by zinc-transporter activity. New Phytol. 2010;186(2):400–14.
Article
PubMed
CAS
Google Scholar
Mori A, Kirk GJ, Lee JS, Morete MJ, Nanda AK, Johnson-Beebout SE, Wissuwa M. Rice genotype differences in tolerance of zinc-deficient soils: evidence for the importance of root-induced changes in the Rhizosphere. Front Plant Sci. 2015;6:1160.
PubMed
Google Scholar
Ishimaru Y, Masuda H, Suzuki M, Bashir K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. J Exp Bot. 2007;58(11):2909–15.
Article
CAS
PubMed
Google Scholar
Olsen LI, Hansen TH, Larue C, Osterberg JT, Hoffmann RD, Liesche J, Kramer U, Surble S, Cadarsi S, Samson VA, et al. Mother-plant-mediated pumping of zinc into the developing seed. Nat Plants. 2016;2(5):16036.
Article
CAS
PubMed
Google Scholar
Cai H, Huang S, Che J, Yamaji N, Ma JF. The tonoplast-localized transporter OsHMA3 plays an important role in maintaining Zn homeostasis in rice. J Exp Bot. 2019;70(10):2717–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sasaki A, Yamaji N, Mitani-Ueno N, Kashino M, Ma JF. A node-localized transporter OsZIP3 is responsible for the preferential distribution of Zn to developing tissues in rice. Plant J. 2015;84(2):374–84.
Article
CAS
PubMed
Google Scholar
Sinclair SA, Senger T, Talke IN, Cobbett CS, Haydon MJ, Kramer U. Systemic Upregulation of MTP2- and HMA2-mediated Zn partitioning to the shoot supplements local Zn deficiency responses. Plant Cell. 2018;30(10):2463–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nanda AK, Pujol V, Wissuwa M. Patterns of stress response and tolerance based on transcriptome profiling of rice crown tissue under zinc deficiency. J Exp Bot. 2017;68(7):1715–29.
Article
CAS
PubMed
Google Scholar
Zeng H, Zhang X, Ding M, Zhang X, Zhu Y. Transcriptome profiles of soybean leaves and roots in response to zinc deficiency. Physiol Plant. 2019;167:330–51.
Article
CAS
PubMed
Google Scholar
Bandyopadhyay T, Mehra P, Hairat S, Giri J. Morpho-physiological and transcriptome profiling reveal novel zinc deficiency-responsive genes in rice. Funct Integr Genomics. 2017;17(5):565–81.
Article
CAS
PubMed
Google Scholar
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.
Article
CAS
PubMed
Google Scholar
Song X, Li Y, Cao X, Qi Y. MicroRNAs and their regulatory roles in plant-environment interactions. Annu Rev Plant Biol. 2019;70:489–525.
Article
CAS
PubMed
Google Scholar
Tang J, Chu C. MicroRNAs in crop improvement: fine-tuners for complex traits. Nat Plants. 2017;3(7):17077.
Article
PubMed
Google Scholar
Li S, Castillo-Gonzalez C, Yu B, Zhang X. The functions of plant small RNAs in development and in stress responses. Plant J. 2017;90(4):654–70.
Article
CAS
PubMed
Google Scholar
Khraiwesh B, Zhu JK, Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta. 2012;1819(2):137–48.
Article
CAS
PubMed
Google Scholar
Gao S, Yang L, Zeng HQ, Zhou ZS, Yang ZM, Li H, Sun D, Xie F, Zhang B. A cotton miRNA is involved in regulation of plant response to salt stress. Sci Rep. 2016;6:19736.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meng Y, Shao C, Wang H, Chen M. The regulatory activities of plant microRNAs: a more dynamic perspective. Plant Physiol. 2011;157(4):1583–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Z, Hu L, Han N, Hu J, Yang Y, Xiang T, Zhang X, Wang L. Overexpression of a miR393-resistant form of transport inhibitor response protein 1 (mTIR1) enhances salt tolerance by increased osmoregulation and Na+ exclusion in Arabidopsis thaliana. Plant Cell Physiol. 2015;56(1):73–83.
Article
CAS
PubMed
Google Scholar
Shao Y, Zhou HZ, Wu Y, Zhang H, Lin J, Jiang X, He Q, Zhu J, Li Y, Yu H, et al. OsSPL3, an SBP-domain protein, regulates crown root development in Rice. Plant Cell. 2019;31(6):1257–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong Y, Jackson S. Floral induction and flower formation--the role and potential applications of miRNAs. Plant Biotechnol J. 2015;13(3):282–92.
Article
CAS
PubMed
Google Scholar
Fang Y, Xie K, Xiong L. Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. J Exp Bot. 2014;65(8):2119–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, Hwang D, Nam HG. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science. 2009;323(5917):1053–7.
Article
CAS
PubMed
Google Scholar
Jiang D, Chen W, Dong J, Li J, Yang F, Wu Z, Zhou H, Wang W, Zhuang C. Overexpression of miR164b-resistant OsNAC2 improves plant architecture and grain yield in rice. J Exp Bot. 2018;69(7):1533–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng H, Wang G, Hu X, Wang H, Du L, Zhu Y. Role of microRNAs in plant responses to nutrient stress. Plant Soil. 2014;374:1005–21.
Article
CAS
Google Scholar
Pilon M. The copper microRNAs. New Phytol. 2017;213(3):1030–5.
Article
CAS
PubMed
Google Scholar
Liu TY, Lin WY, Huang TK, Chiou TJ. MicroRNA-mediated surveillance of phosphate transporters on the move. Trends Plant Sci. 2014;19(10):647–55.
Article
CAS
PubMed
Google Scholar
Wang L, Zeng HQ, Song J, Feng SJ. Yang ZM: miRNA778 and SUVH6 are involved in phosphate homeostasis in Arabidopsis. Plant Sci. 2015;238:273–85.
Article
CAS
PubMed
Google Scholar
Hu B, Zhu C, Li F, Tang J, Wang Y, Lin A, Liu L, Che R, Chu C. LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice. Plant Physiol. 2011;156(3):1101–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin WY, Huang TK, Chiou TJ. Nitrogen limitation adaptation, a target of microRNA827, mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis. Plant Cell. 2013;25(10):4061–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Zhao X, Li J, Cai H, Deng XW, Li L. MicroRNA408 is critical for the HY5-SPL7 gene network that mediates the coordinated response to light and copper. Plant Cell. 2014;26(12):4933–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeong DH, Park S, Zhai J, Gurazada SG, De Paoli E, Meyers BC, Green PJ. Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage. Plant Cell. 2011;23(12):4185–207.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dai X, Zhao PX. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res. 2011;39(Web Server issue):W155–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li YF, Zheng Y, Addo-Quaye C, Zhang L, Saini A, Jagadeeswaran G, Axtell MJ, Zhang W, Sunkar R. Transcriptome-wide identification of microRNA targets in rice. Plant J. 2010;62(5):742–59.
Article
CAS
PubMed
Google Scholar
Zhou M, Gu L, Li P, Song X, Wei L, Chen Z, Cao X. Degradome sequencing reveals endogenous small RNA targets in rice (Oryza sativa L. ssp. indica). Front Biol. 2010;5(1):67–90.
Article
CAS
Google Scholar
Pan J, Huang D, Guo Z, Kuang Z, Zhang H, Xie X, Ma Z, Gao S, Lerdau MT, Chu C, et al. Overexpression of microRNA408 enhances photosynthesis, growth, and seed yield in diverse plants. J Integr Plant Biol. 2018;60(4):323–40.
Article
CAS
PubMed
Google Scholar
Lu Y, Feng Z, Bian L, Xie H. Liang J: miR398 regulation in rice of the responses to abiotic and biotic stresses depends on CSD1 and CSD2 expression. Funct Plant Biol. 2011;38(1):44.
Article
CAS
Google Scholar
Guan Q, Lu X, Zeng H, Zhang Y, Zhu J. Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J. 2013;74(5):840–51.
Article
CAS
PubMed
Google Scholar
Li Y, Cao XL, Zhu Y, Yang XM, Zhang KN, Xiao ZY, Wang H, Zhao JH, Zhang LL, Li GB, et al. Osa-miR398b boosts H2O2 production and rice blast disease-resistance via multiple superoxide dismutases. New Phytol. 2019;222(3):1507–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma C, Burd S. Lers a: miR408 is involved in abiotic stress responses in Arabidopsis. Plant J. 2015;84(1):169–87.
Article
CAS
PubMed
Google Scholar
Zhang JP, Yu Y, Feng YZ, Zhou YF, Zhang F, Yang YW, Lei MQ, Zhang YC, Chen YQ. MiR408 regulates grain yield and photosynthesis via a Phytocyanin protein. Plant Physiol. 2017;175(3):1175–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan S, Li Z, Li D, Yuan N, Hu Q, Luo H. Constitutive expression of Rice MicroRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping Bentgrass. Plant Physiol. 2015;169(1):576–93.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu J, Yang R, Yang Z, Yao S, Zhao S, Wang Y, Li P, Song X, Jin L, Zhou T, et al. ROS accumulation and antiviral defence control by microRNA528 in rice. Nat Plants. 2017;3:16203.
Article
CAS
PubMed
Google Scholar
Zhang YC, Yu Y, Wang CY, Li ZY, Liu Q, Xu J, Liao JY, Wang XJ, Qu LH, Chen F, et al. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat Biotechnol. 2013;31(9):848–52.
Article
CAS
PubMed
Google Scholar
Xue C, Yao JL, Qin MF, Zhang MY, Allan AC, Wang DF, Wu J. PbrmiR397a regulates lignification during stone cell development in pear fruit. Plant Biotechnol J. 2019;17(1):103–17.
Article
CAS
PubMed
Google Scholar
Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible WR. Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol. 2009;150(3):1541–55.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee S, Jeong HJ, Kim SA, Lee J, Guerinot ML, An G. OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol. 2010;73(4):507–17.
Article
CAS
PubMed
Google Scholar
Liang G, Yang F, Yu D. MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J. 2010;62(6):1046–57.
CAS
PubMed
Google Scholar
Lu YB, Qi YP, Yang LT, Guo P, Li Y, Chen LS. Boron-deficiency-responsive microRNAs and their targets in Citrus sinensis leaves. BMC Plant Biol. 2015;15:271.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y. DNA methylation mediated by a microRNA pathway. Mol Cell. 2010;38(3):465–75.
Article
CAS
PubMed
Google Scholar
Cuperus JT, Fahlgren N, Carrington JC. Evolution and functional diversification of MIRNA genes. Plant Cell. 2011;23(2):431–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Secco D, Whelan J, Rouached H, Lister R. Nutrient stress-induced chromatin changes in plants. Curr Opin Plant Biol. 2017;39:1–7.
Article
CAS
PubMed
Google Scholar
Hafeez B, Khanif Y, Saleem M. Role of zinc in plant nutrition-a review. Am J Exp Agri. 2013;3(2):374–91.
CAS
Google Scholar
Kausar MA, Chaudhry FM, Rashid A, Latif A, Alam SM. Micronutrient availability to cereals from calcareous soils. Plant Soil. 1976;45(2):397–410.
Article
CAS
Google Scholar
Dong C, He F, Berkowitz O, Liu J, Cao P, Tang M, Shi H, Wang W, Li Q, Shen Z, et al. Alternative splicing plays a critical role in maintaining mineral nutrient homeostasis in Rice (Oryza sativa). Plant Cell. 2018;30(10):2267–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M. Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem. 2007;282(22):16369–78.
Article
CAS
PubMed
Google Scholar
Abdel-Ghany SE, Pilon M. MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem. 2008;283(23):15932–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frei M, Wang Y, Ismail AM, Wissuwa M. Biochemical factors conferring shoot tolerance to oxidative stress in rice grown in low zinc soil. Funct Plant Biol. 2010;37(1):74–84.
Article
CAS
Google Scholar
Lee JS, Wissuwa M, Zamora OB, Ismail AM. Biochemical indicators of root damage in rice (Oryza sativa) genotypes under zinc deficiency stress. J Plant Res. 2017;130(6):1071–7.
Article
CAS
PubMed
Google Scholar
Sunkar R, Kapoor A, Zhu JK. Posttranscriptional induction of two cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell. 2006;18(8):2051–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng HQ, Liu G, Kinoshita T, Zhang RP, Zhu YY, Shen QR, Xu GH. Stimulation of phosphorus uptake by ammonium nutrition involves plasma membrane H+ ATPase in rice roots. Plant Soil. 2012;357(1–2):205–14.
Article
CAS
Google Scholar
Yoshida S, Forno DA, Cock JH. Laboratory manual for physiological studies of rice. Manila: International Rice Research Institute; 1971.
Liu XS, Feng SJ, Zhang BQ, Wang MQ, Cao HW, Rono JK, Chen X, Yang ZM. OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice. BMC Plant Biol. 2019;19(1):283.
Article
PubMed
PubMed Central
CAS
Google Scholar
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. Gene Ontol Cons Nat Genet. 2000;25(1):25–9.
CAS
Google Scholar
Du Z, Zhou X, Ling Y, Zhang Z, Su Z. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010;38(Web Server issue):W64–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Axtell MJ, Meyers BC. Revisiting criteria for plant MicroRNA annotation in the era of big data. Plant Cell. 2018;30(2):272–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng H, Zhang Y, Zhang X, Pi E, Zhu Y. Analysis of EF-hand proteins in soybean genome suggests their potential roles in environmental and nutritional stress signaling. Front Plant Sci. 2017;8(877):877.
Article
PubMed
PubMed Central
Google Scholar
Zeng HQ, Zhu YY, Huang SQ, Yang ZM. Analysis of phosphorus-deficient responsive miRNAs and cis-elements from soybean (Glycine max L.). J Plant Physiol. 2010;167(15):1289–97.
Article
CAS
PubMed
Google Scholar
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45.
Article
CAS
PubMed
PubMed Central
Google Scholar