Sayama T, Nakazaki T, Ishikawa G, Yagasaki K, Yamada N, Hirota N, Hirata K, Yoshikawa T, Saito H, Teraishi M, Okumoto Y, Tsukiyama T, Tanisaka T. QTL analysis of seed-flooding tolerance in soybean (Glycine max [L.] Merr.). Plant Sci. 2009;176(4):514–21.
Article
CAS
PubMed
Google Scholar
Khan MN, Komatsu S. Proteomic analysis of soybean root including hypocotyl during recovery from drought stress. J Proteomics. 2016;144:39–50.
Article
CAS
PubMed
Google Scholar
Tian X, Liu Y, Huang Z, Duan H, Tong J, He X, Gu W, Ma H, Xiao L. Comparative proteomic analysis of seedling leaves of cold-tolerant and -sensitive spring soybean cultivars. Mol Biol Rep. 2015;42(3):581–601.
Article
CAS
PubMed
Google Scholar
Meng N, Yu BJ. Proteomics-based investigation of salt-responsive mechanisms in roots of Bradyrhizobium japonicum-inoculated Glycine max and Glycine soja seedlings. J Plant Growth Regul. 2017;37(1):1–12.
Google Scholar
Spear JD, Fehr WR. Genetic improvement of seedling emergence of soybean lines with low phytate. Crop Sci. 2007;47(4):1354–60.
Article
CAS
Google Scholar
Sun Q, Wang JH, Sun BQ. Advances on seed vigor physiological and genetic mechanisms. Agric Sci China. 2007;6(9):1060–6.
Article
Google Scholar
Meis SJ, Fehr WR, Schnebly SR. Seed source effect on field emergence of soybean lines with reduced phytate and raffinose saccharides. Crop Sci. 2003;43(4):1336–9.
Article
Google Scholar
Raboy V, Young KA, Dorsch JA, Cook A. Genetics and breeding of seed phosphorus and phytic acid. J Plant Physiol. 2001;158(4):489–97.
Article
CAS
Google Scholar
Sharpley AN, Chapra SC, Wedepohl R, Sims JT, Daniel TC, Reddy KR. Managing agricultural phosphorus for protection of surface waters: issues and options. J Environ Qual. 2008;23(3):437–51.
Article
Google Scholar
Raboy V. Approaches and challenges to engineering seed phytate and total phosphorus. Plant Sci. 2009;177(4):281–96.
Article
CAS
Google Scholar
Oltmans SE, Fehr WR, Welke GA, Raboy V, Peterson KL. Agronomic and seed traits of soybean lines with low-phytate phosphorus. Crop Sci. 2005;45(2):593–8.
Article
CAS
Google Scholar
Bregitzer P, Raboy V. Effects of four independent low-phytate mutations on barley agronomic performance. Crop Sci. 2006;46(3):1318–22.
Article
Google Scholar
Yuan FJ, Zhao HJ, Ren XL, Zhu SL, Fu XJ, Shu QY. Generation and characterization of two novel low phytate mutations in soybean (Glycine max L. Merr.). Theor Appl Genet. 2007;115(7):945–57.
Article
CAS
PubMed
Google Scholar
Yuan FJ, Yu XM, Dong DK, Yang QH, Fu XJ, Zhu SL, Zhu DH. Whole genome-wide transcript profiling to identify differentially expressed genes associated with seed field emergence in two soybean low phytate mutants. BMC Plant Biol. 2017;17(1):16.
Article
PubMed
PubMed Central
CAS
Google Scholar
He M, Zhu C, Dong K, Zhang T, Cheng ZW, Li JR, Yan YM. Comparative proteome analysis of embryo and endosperm reveals central differential expression proteins involved in wheat seed germination. BMC Plant Biol. 2015;15(1):97.
Article
PubMed
PubMed Central
CAS
Google Scholar
Holdsworth MJ, Bentsink L, Soppe WJJ. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol. 2010;179(1):33–54.
Article
CAS
Google Scholar
Wilman V, Campbell EE, Potts AJ, Cowling RM. A mismatch between germination requirements and environmental conditions: niche conservatism in xeric subtropical thicket canopy species. S Afr J Bot. 2014;92(1):1–6.
Article
Google Scholar
Deng ZY, Gong CY, Wang T. Use of proteomics to understand seed development in rice. Proteomics. 2013;13(12–13):1784–800.
Article
CAS
PubMed
Google Scholar
Tan BC, Lim YS, Lau SE. Proteomics in commercial crops: An overview. J Proteomics. 2017;169:176–88.
Article
CAS
PubMed
Google Scholar
Goettel W, Xia E, Upchurch R, Wang ML, Chen PY, Charles An YQ. Identification and characterization of transcript polymorphisms in soybean lines varying in oil composition and content. BMC Genomics. 2014;15:299–315.
Article
PubMed
PubMed Central
CAS
Google Scholar
He D, Han C, Yang P. Gene expression profile changes in germinating rice. J Integr Plant Biol. 2011;53:835–44.
Article
CAS
PubMed
Google Scholar
Kranner I, Roach T, Beckett RP, Whitaker C, Minibayeva FV. Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum. J Plant Physiol. 2010;167:805–11.
Article
CAS
PubMed
Google Scholar
Xi W, Liu C, Hou X, Yu H. Mother of TR AND TFL1 regulates seed germination through a negative feedback loop modulation ABA signaling in Arabidopsis. Plant Cell. 2010;22:1733–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghosh S, Pal A. Identification of differential proteins of mungbean cotyledons during seed germination: a proteomic approach. Acta Physiol Plant. 2012;34(6):2379–91.
Article
CAS
Google Scholar
Chow TY, Lin TY, Hsing YC. A soybean seed maturation protein cDNA GmPM31 (Accession No. AF117885) encode a class I low molecular weight heat shock protein. (PGR99–177). Plant Physiol. 1999;121(4):1383.
Article
Google Scholar
Okuda A, Matsusaki M, Masuda T, Urade R. Identification and characterization of GmPDIL7, a soybean ER membrane-bound protein disulfide isomerase family protein. FEBS J. 2017;284(3):414–28.
Article
CAS
PubMed
Google Scholar
Wang XX, Li Y, Tang JW, Ouyang CB, Zhu DJ, Xu ZM. Analysis of oat seed protein during seed germination under salt stress. Acta Agriculturae Boreali-Sinica. 2015;30:48–53.
Article
CAS
Google Scholar
Schirch L. Serine hydroxymethyltransferase. Adv Enzymol Relat Areas Mol Biol. 1982;53:83–112.
CAS
PubMed
Google Scholar
Matthews RG, Drummond JT. Providing one-carbon units for biological methylations: mechanistic studies on serine hydroxymethyltransferase, methylenetetralydrofolate reductase, and methyltetrahydrofolate-homocysteine methyltransferase. Chem Rev. 1990;90(7):1275–90.
Article
CAS
Google Scholar
Bauwe H, Kolukisaoglu U. Genetic manipulation of glycine decarboxylation. J Exp Bot. 2003;54(387):1523–35.
Article
CAS
PubMed
Google Scholar
Schirch V, Szebenyi DM. Serine hydroxymethyltransferase revisited. Curr Opin Chem Biol. 2005;9(5):482–7.
Article
CAS
PubMed
Google Scholar
Guo L, Huo GC. Biochemical characteristics and nutritional changes of germinated soybean. Sci Technol Grain Oil. 2002;10:8–10.
Google Scholar
Huang JX, Cai MH, Long QZ, Liu LL, Lin QY, Jiang L, Chen SH, Wan JM. OsLOX2, a rice type I lipoxygenase, confers opposite effects on seed germination and longevity. Transgenic Res. 2014;23(4):643–55.
Article
CAS
PubMed
Google Scholar
Wang FL, Wu GT, Lang CX, Liu RH. Influence on Brassica seed oil content by transformation with heteromeric acetyl-Co A carboxylase (ACCase) gene. Fenzi Zhiwu Yuzhong. 2017;15:920–7.
Google Scholar
Zhou WG, Chen F, Zhao SH, Yang CQ, Meng YJ, Shuai HW, Luo XF, Dai YJ, Yin H, Du JB, Liu J, Fan GQ, Liu WG, Yang WY, Shu K. DA-6 promotes germination and seedling establishment from aged soybean seeds by mediating fatty acid metabolism and glycometabolism. J Exp Bot. 2019;70:101–14.
Article
PubMed
Google Scholar
Jin XL, Yang RQ, Guo LP, Wang XK, Yan XK, Gu ZX. iTRAQ analysis of low-phytate mung bean sprouts treated with sodium citrate, sodium acetate and sodium tartrate. Food Chem. 2017;218:285–93.
Article
CAS
PubMed
Google Scholar
Aguirre M, Kiegle E, Leo G, Ezquer I. Carbohydrate reserves and seed development: an overview. Plant Reprod. 2018;31:263–90.
Article
CAS
PubMed
Google Scholar
Neill ECO, Field BA. Enzymatic synthesis using glycoside phosphorylases. Carbohydr Res. 2015;403:23–37.
Article
CAS
Google Scholar
Lal SK, Sachs MM. Cloning and characterization of an anaerobically induced cDNA encoding glucose-g-phosphate isomerase from maize. Plant Physiol. 1995;108:1295–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duan E, Wang YH, Liu LL, Zhu JP, Zhong MS, Zhang H, Li SF, Ding BX, Zhang X, Guo XP, Jiang L, Wan JM. Pyrophosphate: fructose-6-phosphate 1-phosphotransferase (PFP) regulates carbon metabolism during grain filling in rice. Plant Cell Rep. 2016;35:1321–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taiz L, Zeiger E, Møller IM, Murphy A. Plant physiology and development. 6th ed. Sunderland: Sinauer Associates; 2014.
Google Scholar
Thalmann M, Coiro M, Meier T, Wicker T, Zeeman SC, Santelis D. The evolution of functional complexity within the beta-amylase gene family in land plants. BMC Evol Biol. 2019;19:66–78.
Article
PubMed
PubMed Central
Google Scholar
Silva AT, Ligterink W, Hilhorst HWM. Metabolite profiling and associated gene expression reveal two metabolic shifts during the seed-to-seedling transition in Arabidopsis thaliana. Plant Mol Biol. 2017;95:481–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mei M, Lu XJ, Zhang XL, Liu GL, Sun XM. Variation in carbohydrates and screening of related differential proteins during the seed germination of Magnolia sieboldii K. Koch Trees. 2017;31:63–75.
Article
CAS
Google Scholar
Schilmiller AL, Koo AJK, Howe GA. Functional diversification of acyl-coenzyme a oxidases in jasmonic acid biosynthesis and action. Plant Physiol. 2007;143(2):812–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Liu S, Takano T. Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Mol Biol. 2008;68(1–2):131–43.
Article
CAS
PubMed
Google Scholar
Hwang JE, Hong JK, Je JH, Lee KO, Kim DY, Lee SY, Lim CO. Regulation of seed germination and seedling growth by an Arabidopsis phytocystatin isoform, AtCYS6. Plant Cell Rep. 2009;28(11):1623–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diop NN, Kidric M, Repellin A, Gareil M, D’Arcy-Lameta A, Pham Thi AT, Zuily-Fodil Y. A multicystatin is induced by drought-stress in cowpea (Vigna unguiculata (L.) Walp.) leaves. FEBS Lett. 2004;577(3):545–50.
Article
CAS
PubMed
Google Scholar
Massonneau A, Condamine P, Wisniewski JP, Zivy M, Rogowsky PM. Maize cystatins respond to developmental cues, cold stress and drought. Biochim Biophys Acta. 2005;1729(3):186–99.
Article
CAS
PubMed
Google Scholar
Sarowar S, Kim YJ, Kim KD, Hwang BK, Ok SH, Shin JS. Overexpression of lipid transfer protein (LTP) genes enhances resistance to plant pathogens and LTP functions in long-distance systemic signaling in tobacco. Plant Cell Rep. 2009;28(3):419–27.
Article
CAS
PubMed
Google Scholar
Wang X, Zhou W, Lu ZH, Ouyang YD, CS O, Yao JL. A lipid transfer protein, OsLTPL36, is essential for seed development and seed quality in rice. Plant Sci. 2015;239:200–8.
Article
CAS
PubMed
Google Scholar
Parkhey S, Naithani SC, Keshavkant S. ROS production and lipid catabolism in desiccating shorea robusta seeds during aging. Plant Physiol Biochem. 2012;57:261–7.
Article
CAS
PubMed
Google Scholar
Chen Q, Yang L, Ahmad P, Wan X, Hu X. Preteomic profiling and redox status alteration of recalcitrant tea seed in response to desiccation. Planta. 2011;233:583–92.
Article
CAS
PubMed
Google Scholar
Chen C, Letnik I, Hacham Y, Dobrev P, Ben-Daniel BH, Vankova R, Amir R, Miller G. Ascorbate peroxidase 6 protects Arabidopsis thaliana desiccating and germinating seeds from stress and mediates crosstalk between ROS, ABA and auxin. Plant Physiol. 2014;166:370–83.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen H, Wang FW, Dong YY, Wang N, Sun YP, Li XY, Liu L, Fan XD, Yin HL, Jing YY, Zhang XY, Li YL, Chen G, Li HY. Sequence mining and transcript profiling to explore differentially expressed genes associated with lipid biosynthesis during soybean seed development. Plant Biol. 2012;12:122–36.
CAS
Google Scholar
Esteve C, D’Amato A, Marina ML, García MC, Righetti PG. In-depth proteomic analsysis of banana (Musa spp.) fruit with combinatorial peptide ligand libraries. Electrophoresis. 2013;34(2):207–14.
Article
CAS
PubMed
Google Scholar
Barkan A. Genome-wide analysis of RNA-protein interactions in plants. Methods Mol Biol. 2009;553:13–37.
Article
CAS
PubMed
Google Scholar
Zeng J, Liu Y, Liu W, Liu X, Liu F, Huang P, Zhu P, Chen J, Shi M, Guo F, Cheng P, Zeng J, Liao Y, Gong J, Zhang H, Wang D, Guo A, Xiong X. Integration of transcriptome, proteome and metabolism data reveals the alkaloids biosynthesis in Macleaya cordata and Macleaya microcarpa. PLoS One. 2013;8(1):e53409.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muers M. Gene expression: transcriptome to proteome and back to genome. Nat Rev Genet. 2011;12(8):518.
Article
CAS
PubMed
Google Scholar
Ma J, Chen T, Wu SF, Yang CY, Bai MZ, Shu KX, Li KL, Zhang GQ, Jin Z, He FC, Hermjakob H, Zhu YP. iProX: an integrated proteome resource. Nucleic Acids Res. 2019;47:D1211–7.
Article
PubMed
Google Scholar