Li H, Wang Y, Li X, Gao Y, Wang Z, Zhao Y, Wang M. A GA-insensitive dwarf mutant of Brassica napus L. correlated with mutation in pyrimidine box in the promoter of GID1. Mol Biol Rep. 2011;38(1):191–7.
Article
CAS
PubMed
Google Scholar
Salamini F. Hormones and the green revolution. Science. 2003;302(5642):71–2.
Article
CAS
PubMed
Google Scholar
Hedden P. The genes of the green revolution. Trends Genet. 2003;19(1):5–9.
Article
CAS
PubMed
Google Scholar
Lv H, Zheng J, Wang T, Fu J, Huai J, Min H, Zhang X, Tian B, Shi Y, Wang G. The maize d2003, a novel allele of VP8, is required for maize internode elongation. Plant Mol Biol. 2014;84(3):243–57.
Article
CAS
PubMed
Google Scholar
Wang B, Smith S, Li J. Genetic gegulation of shoot architecture. Annu Rev Plant Biol. 2018;69:437–68.
Article
CAS
PubMed
Google Scholar
Evans MMS, Poethig RS. Gibberellins promote vegetative phase change and reproductive maturity in maize. Plant Physiol. 1995;108(2):475–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng J, Richards D, Hartley N, et al. 'Green revolution' genes encode mutant gibberellin response modulators. Nature. 1999;400(6741):256–61.
Article
CAS
PubMed
Google Scholar
Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell. 2009;21(5):1512–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Bai M, Oh E, Zhu J. Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet. 2012;46:701–24.
Article
CAS
PubMed
Google Scholar
Guo H, Li L, Aluru M, Aluru S, Yin Y. Mechanisms and networks for brassinosteroid regulated gene expression. Curr Opin Plant Biol. 2013;16(5):545–53.
Article
CAS
PubMed
Google Scholar
Bensen R, Johal G, Crane V, Tossberg J, Schnable P, Meeley R, Briggs S. Cloning and characterization of the maize an1 gene. Plant Cell. 1995;7(1):75–84.
CAS
PubMed
PubMed Central
Google Scholar
Winkler R, Helentjaris T. The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. Plant Cell. 1995;7(8):1307–17.
CAS
PubMed
PubMed Central
Google Scholar
Lawit S, Wych H, Xu D, Kundu S, Tomes D. Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant Cell Physiol. 2010;51(11):1854–68.
Article
CAS
PubMed
Google Scholar
Bishop G, Nomura T, Yokota T, Harrison K, Noguchi T, Fujioka S, Takatsuto S, Jones J, Kamiya Y. The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc Natl Acad Sci U S A. 1999;96(4):1761–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schultz L, Kerckhoffs L, Klahre U, Yokota T, Reid J. Molecular characterization of the brassinosteroid-deficient lkb mutant in pea. Plant Mol Biol. 2001;47(4):491–8.
Article
CAS
PubMed
Google Scholar
Shimada Y, Fujioka S, Miyauchi N, Kushiro M, Takatsuto S, Nomura T, Yokota T, Kamiya Y, Bishop G, Yoshida S. Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiol. 2001;126(2):770–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y, Fujioka S, Shimada Y, Takatsuto S, Agetsuma M, Yoshida S, Watanabe Y, Uozu S, Kitano H, Ashikari M, Matsuoka M. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J. 2002;32(4):495–508.
Article
CAS
PubMed
Google Scholar
Best N, Hartwig T, Budka J, Fujioka S, Johal G, Schulz B, Dilkes B. mEncodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis gene DWARF1, identifying developmental interactions between brassinosteroids and gibberellins. Plant Physiol. 2016;171(4):2633–47.
CAS
PubMed
PubMed Central
Google Scholar
Hu Z, Yan H, Yang J, Yamaguchi S, Maekawa M, Takamure I, Tsutsumi N, Kyozuka J, Nakazono M. Strigolactones negatively regulate mesocotyl elongation in rice during germination and growth in darkness. Plant Cell Physiol. 2010;51(7):1136–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benjamins R, Scheres B. Auxin: the looping star in plant development. Annu Rev Plant Biol. 2008;59:443–65.
Article
CAS
PubMed
Google Scholar
Cheng Y, Dai X, Zhao Y. Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell. 2007;19(8):2430–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamada M, Greenham K, Prigge M, Jensen P, Estelle M. The transport inhibitor response2 gene is required for auxin synthesis and diverse aspects of plant development. Plant Physiol. 2009;151(1):168–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stepanova A, Robertson-Hoyt J, Yun J, Benavente L, Xie D, Dolezal K, Schlereth A, Jürgens G, Alonso J. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell. 2008;133(1):177–91.
Article
CAS
PubMed
Google Scholar
Phillips K, Skirpan A, Liu X, Christensen A, Slewinski T, Hudson C, Barazesh S, Cohen J, Malcomber S, McSteen P. vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell. 2011;23(2):550–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kepinski S, Leyser O. Auxin-induced SCFTIR1-aux/IAA interaction involves stable modification of the SCFTIR1 complex. Proc Natl Acad Sci U S A. 2004;101(33):12381–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quint M, Gray W. Auxin signaling. Curr Opin Plant Biol. 2006;9(5):448–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamann T, Benkova E, Bäurle I, Kientz M, Jürgens G. The Arabidopsis bodenlos gene encodes an auxin response protein inhibiting monopteros-mediated embryo patterning. Genes Dev. 2002;16(13):1610–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hardtke C, Ckurshumova W, Vidaurre D, Singh S, Stamatiou G, Tiwari S, Hagen G, Guilfoyle T, Berleth T. Overlapping and non-redundant functions of the Arabidopsis auxin response factors monopteros and nonphototropic hypocotyl 4. Development. 2004;131(5):1089–100.
Article
CAS
PubMed
Google Scholar
Dharmasiri N, Dharmasiri S, Estelle M. The F-box protein TIR1 is an auxin receptor. Nature. 2005;435(7041):441–5.
Article
CAS
PubMed
Google Scholar
Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann J, Jürgens G, Estelle M. Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell. 2005b;9(1):109–19.
Article
CAS
PubMed
Google Scholar
Grieneisen V, Xu J, Marée A, Hogeweg P, Scheres B. Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature. 2007;449(7165):1008–13.
Article
CAS
PubMed
Google Scholar
Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science. 2003;302(5642):81–4.
Article
CAS
PubMed
Google Scholar
Xing A, Gao Y, Ye L, Zhang W, Cai L, Ching A, Llaca V, Johnson B, Liu L, Yang X, Kang D, Yan J, Li J. A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize. J Exp Bot. 2015;66(13):3791–802.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knöller A, Blakeslee J, Richards E, Peer W, Murphy A. Brachytic2/ZmABCB1 functions in IAA export from intercalary meristems. J Exp Bot. 2010;61(13):3689–96.
Article
PubMed
PubMed Central
CAS
Google Scholar
Geisler M, Blakeslee J, Bouchard R, et al. Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J. 2005;44(2):179–94.
Article
CAS
PubMed
Google Scholar
Santelia D, Vincenzetti V, Azzarello E, Bovet L, Fukao Y, Düchtig P, Mancuso S, Martinoia E, Geisler M. MDR-like ABC transporter AtPGP4 is involved in auxin-mediated lateral root and root hair development. FEBS Lett. 2005;579(24):5399–406.
Article
CAS
PubMed
Google Scholar
Greene J, Brown N, DiDomenico B, Kaplan J, Eide D. The GEF1 gene of saccharomyces cerevisiae encodes an integral membrane protein; mutations in which have effects on respiration and iron-limited growth. Mol Gen Genet. 1993;241(5–6):542–53.
Article
CAS
PubMed
Google Scholar
Petrásek J, Friml J. Auxin transport routes in plant development. Development. 2009;136(16):2675–88.
Article
PubMed
CAS
Google Scholar
Wei L, Zhang X, Zhang Z, Liu H, Lin Z. A new allele of the Brachytic2 gene in maize can efficiently modify plant architecture. Heredity. 2018;121(1):75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balzan S, Carraro N, Salleres B, Cortivo CD, Tuinstra MR, Johal G, Varotto S. Genetic and phenotypic characterization of a novel brachytic2 allele of maize. Plant Growth Regul. 2018;86(1):81–92.
Article
CAS
Google Scholar
Li C, Zheng L, Zhang J, Lv Y, Liu J, Wang X, Palfalvi G, Wang G, Zhang Y. Characterization and functional analysis of four HYH splicing variants in Arabidopsis hypocotyl elongation. Gene. 2017;619:44–9.
Article
CAS
PubMed
Google Scholar
Geisler M, Murphy A. The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Lett. 2006;580(4):1094–102.
Article
CAS
PubMed
Google Scholar
Hellsberg E, Montanari F, Ecker G. The ABC of phytohormone translocation. Planta Med. 2015;81(6):474–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pighin J, Zheng H, Balakshin L, Goodman I, Western T, Jetter R, Kunst L, Samuels A. Plant cuticular lipid export requires an ABC transporter. Science. 2004;306(5696):702–4.
Article
CAS
PubMed
Google Scholar
Nishimura T, Mori Y, Furukawa T, Kadota A, Koshiba T. Red light causes a reduction in IAA levels at the apical tip by inhibiting de novo biosynthesis from tryptophan in maize coleoptiles. Planta. 2006;224(6):1427–35.
Article
CAS
PubMed
Google Scholar
Nishimura T, Koshiba T. Auxin biosynthesis site and polar transport in maize coleoptiles. Plant Signal Behav. 2010;5(5):573–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grunewald W, Friml J. The march of the PINs: developmental plasticity by dynamic polar targeting in plant cells. EMBO J. 2010;29(16):2700–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mravec J, Kubes M, Bielach A, Gaykova V, Petrásek J, Skůpa P, Chand S, Benková E, Zazímalová E, Friml J. Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent development. Development. 2008;135(20):3345–54.
Article
CAS
PubMed
Google Scholar
Bandyopadhyay A, Blakeslee J, Lee O, Mravec J, Sauer M, Titapiwatanakun B, Makam S, Bouchard R, Geisler M, Martinoia E, Friml J, Peer W, Murphy A. Interactions of PIN and PGP auxin transport mechanisms. Biochem Soc Trans. 2007;35(1):137–41.
Article
CAS
PubMed
Google Scholar
Blakeslee J, Bandyopadhyay A, Lee O, et al. Interactions among PIN-formed and P-glycoprotein auxin transporters in Arabidopsis. Plant Cell. 2007;19(1):131–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sidler M, Hassa P, Hasan S, Ringli C, Dudler R. Involvement of an ABC transporter in a developmental pathway regulating hypocotyl cell elongation in the light. Plant Cell. 2008;10(10):1623–36.
Article
Google Scholar
Noh B, Murphy A, Spalding E. Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell. 2001;13(11):2441–54.
CAS
PubMed
PubMed Central
Google Scholar
Weijers D, Schlereth A, Ehrismann J, Schwank G, Kientz M, Jürgens G. Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev Cell. 2006;10(2):265–70.
Article
CAS
PubMed
Google Scholar
Schenck D, Christian M, Jones A, Lüthen H. Rapid auxin-induced cell expansion and gene expression: a four-decade-old question revisited. Plant Physiol. 2010;152(3):1183–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barbier F, Dun E, Beveridge C. Apical dominance. Curr Biol. 2017;27(17):864–5.
Article
CAS
Google Scholar
Kebrom T. A growing stem inhibits bud outgrowth-the overlooked theory of apical dominance. Front Plant Sci. 2017;8:1874.
Article
PubMed
PubMed Central
Google Scholar
Wang Q, Kohlen W, Rossmann S, Vernoux T, Theres K. Auxin depletion from the leaf axil conditions competence for axillary meristem formation in Arabidopsis and tomato. Plant Cell. 2014a;26(5):2068–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Wang J, Shi B, Yu T, Qi J, Meyerowitz E, Jiao Y. The stem cell niche in leaf axils is established by auxin and cytokinin in Arabidopsis. Plant Cell. 2014b;26(5):2055–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Jiao Y. Auxin and above-ground meristems. J Exp Bot. 2018;69(2):147–54.
Article
CAS
PubMed
Google Scholar
Tsuda K, Abraham-Juarez M, Maeno A, Dong Z, Aromdee D, Meeley R, Shiroishi T, Nonomura K, Hake S. KNOTTED1 cofactors, BLH12 and BLH14, regulate internode patterning and vein anastomosis in maize. Plant Cell. 2017;29(5):1105–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sato-Izawa K, Nakaba S, Tamura K, Yamagishi Y, Nakano Y, Nishikubo N, Kawai S, Kajita S, Ashikari M, Funada R, Katayama Y, Kitano H. DWARF50 (D50), a rice (Oryza sativa L.) gene encoding inositol polyphosphate 5-phosphatase, is required for proper development of intercalary meristem. Plant Cell Environ. 2012;35(11):2031–44.
Article
CAS
PubMed
Google Scholar
Biedroń M, Banasiak A. Auxin-mediated regulation of vascular patterning in Arabidopsis thaliana leaves. Plant Cell Rep. 2018;3(9):1215–29.
Article
CAS
Google Scholar
Long J, Barton M. The development of apical embryonic pattern in Arabidopsis. Development. 1998;125(16):3027–35.
CAS
PubMed
Google Scholar