Bais HP, Loyola-Vargas VM, Flores HE, Vivanco JM. Root-specific metabolism: the biology and biochemistry of underground organs. In Vitro Cell Dev-Pl. 2001;37(6):730–41.
Article
CAS
Google Scholar
Lynch JP. Roots of the second green revolution. Aust J Bot. 2007;55(5):493–512.
Article
Google Scholar
Gewin V. Food: an underground revolution. Nature. 2010;466(7306):552–3.
Article
CAS
PubMed
Google Scholar
Gao X, Starr J, Göbel C, Engelberth J, Feussner I, Tumlinson J, Kolomiets M. Maize 9-Lipoxygenase ZmLOX3 controls development, root-specific expression of defense genes, and resistance to root-knot nematodes. Mol Plant Microbe In. 2008;21(1):98–109.
Article
CAS
Google Scholar
Guseman JM, Webb K, Srinivasan C, Dardick C. DRO1 influences root system architecture in Arabidopsis and Prunus species. Plant J. 2017;89(6):1093–105.
Article
CAS
PubMed
Google Scholar
Werner T, Nehnevajova E, Kollmer I, Novak O, Strnad M, Kramer U, Schmulling T. Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell. 2010;22(12):3905–20.
Article
PubMed
PubMed Central
Google Scholar
Koprivova A, Schuck S, Jacoby RP, Klinkhammer I, Welter B, Leson L, Martyn A, Nauen J, Grabenhorst N, Mandelkow JF, et al. Root-specific camalexin biosynthesis controls the plant growth-promoting effects of multiple bacterial strains. Proc Natl Acad Sci U S A. 2019;116(31):15735–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X. The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell. 1997;9(9):1573–84.
CAS
PubMed
PubMed Central
Google Scholar
Pino MT, Skinner JS, Park EJ, Jeknic Z, Hayes PM, Thomashow MF, Chen TH. Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotechnol J. 2007;5(5):591–604.
Article
CAS
PubMed
Google Scholar
Deikman J, Kline R, Fischer RL. Organization of Ripening and Ethylene Regulatory Regions in a fruit-specific promoter from tomato (Lycopersicon esculentum). Plant Physiol. 1992;100(4):2013–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trindade LM, Horvath B, Bachem C, Jacobsen E, Visser RG. Isolation and functional characterization of a stolon specific promoter from potato (Solanum tuberosum L.). Gene. 2003;303:77–87.
Article
CAS
PubMed
Google Scholar
Cao X, Costa LM, Biderre-Petit C, Kbhaya B, Dey N, Perez P, McCarty DR, Gutierrez-Marcos JF, Becraft PW. Abscisic acid and stress signals induce Viviparous1 expression in seed and vegetative tissues of maize. Plant Physiol. 2007;143(2):720–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Liu S, Yu Z, Liu Y, Wu P. Isolation and characterization of two novel root-specific promoters in rice (Oryza sativa L.). Plant Sci. 2013;207:37–44.
Article
CAS
PubMed
Google Scholar
Molla KA, Karmakar S, Chanda PK, Ghosh S, Sarkar SN, Datta SK, Datta K. Rice oxalate oxidase gene driven by green tissue-specific promoter increases tolerance to sheath blight pathogen (Rhizoctonia solani) in transgenic rice. Mol Plant Pathol. 2013;14(9):910–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Jiang B, Wu C, Sun S, Hou W, Han T. The characterization of GmTIP, a root-specific gene from soybean, and the expression analysis of its promoter. Plant Cell Tissue Organ Cult. 2015;121(2):259–74.
Article
CAS
Google Scholar
Wang H, Fan M, Wang G, Zhang C, Shi L, Wei Z, Ma W, Chang J, Huang S, Lin F. Isolation and characterization of a novel pollen-specific promoter in maize (Zea mays L.). Genome. 2017;60(6):485–95.
Article
CAS
PubMed
Google Scholar
Conkling MA, Cheng CL, Yamamoto YT, Goodman HM. Isolation of transcriptionally regulated root-specific genes from tobacco. Plant Physiol. 1990;93(3):1203–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu Y, Buchholz WG, DeRose RT, Hall TC. Characterization of a rice gene family encoding root-specific proteins. Plant Mol Biol. 1995;27(2):237–48.
Article
CAS
PubMed
Google Scholar
Nitz I, Berkefeld H, Puzio PS, Grundler FM. Pyk10, a seedling and root specific gene and promoter from Arabidopsis thaliana. Plant Sci. 2001;161(2):337–46.
Article
CAS
PubMed
Google Scholar
Koyama T, Ono T, Shimizu M, Jinbo T, Mizuno R, Tomita K, Mitsukawa N, Kawazu T, Kimura T, Ohmiya K, et al. Promoter of Arabidopsis thaliana phosphate transporter gene drives root-specific expression of transgene in rice. J Biosci Bioeng. 2005;99(1):38–42.
Article
CAS
PubMed
Google Scholar
Vaughan SP, James DJ, Lindsey K, Massiah AJ. Characterization of FaRB7, a near root-specific gene from strawberry (Fragariaxananassa Duch.) and promoter activity analysis in homologous and heterologous hosts. J Exp Bot. 2006;57(14):3901–10.
Article
CAS
PubMed
Google Scholar
Jones MO, Manning K, Andrews J, Wright C, Taylor IB, Thompson AJ. The promoter from SlREO, a highly-expressed, root-specific Solanum lycopersicum gene, directs expression to cortex of mature roots. Funct Plant Biol. 2008;35(12):1224–33.
Article
CAS
PubMed
Google Scholar
Noh SA, Lee HS, Huh EJ, Huh GH, Paek KH, Shin JS, Bae JM. SRD1 is involved in the auxin-mediated initial thickening growth of storage root by enhancing proliferation of metaxylem and cambium cells in sweetpotato (Ipomoea batatas). J Exp Bot. 2010;61(5):1337–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang C, Pan S, Chen H, Cai T, Zhuang C, Deng Y, Zhuang Y, Zeng Y, Chen S, Zhuang W. Characterization of NtREL1, a novel root-specific gene from tobacco, and upstream promoter activity analysis in homologous and heterologous hosts. Plant Cell Rep. 2016;35(4):757–69.
Article
CAS
PubMed
Google Scholar
Gu R, Zhao L, Zhang Y, Chen X, Bao J, Zhao J, Wang Z, Fu J, Liu T, Wang J, et al. Isolation of a maize beta-glucosidase gene promoter and characterization of its activity in transgenic tobacco. Plant Cell Rep. 2006;25(11):1157–65.
Article
CAS
PubMed
Google Scholar
Furtado A, Henry RJ, Takaiwa F. Comparison of promoters in transgenic rice. Plant Biotechnol J. 2008;6(7):679–93.
Article
CAS
PubMed
Google Scholar
Furtado A, Henry RJ, Pellegrineschi A. Analysis of promoters in transgenic barley and wheat. Plant Biotechnol J. 2009;7(3):240–53.
Article
CAS
PubMed
Google Scholar
Nie D-M, Ouyang Y-D, Wang X, Zhou W, Hu C-G, Yao J. Genome-wide analysis of endosperm-specific genes in rice. Gene. 2013;530(2):236–47.
Article
CAS
PubMed
Google Scholar
Chávez Montes RA, Coello G, González-Aguilera KL, Marsch-Martínez N, de Folter S, Alvarez-Buylla ER. ARACNe-based inference, using curated microarray data, of Arabidopsis thaliana root transcriptional regulatory networks. BMC Plant Biol. 2014;14(1):97.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu X, Tian J, Zhou X, Chen R, Wang L, Zhang C, Zhao J, Fan Y. Identification and characterization of promoters specifically and strongly expressed in maize embryos. Plant Biotechnol J. 2014;12(9):1286–96.
Article
CAS
PubMed
Google Scholar
Huang LY, Zhang F, Qin Q, Wang WS, Fu BY. Identification and validation of root-specific promoters in rice. J Integr Agr. 2015;14(1):1–10.
Article
CAS
Google Scholar
Ling S, Chen C, Wang Y, Sun X, Lu Z, Ouyang Y, Yao J. The mature anther-preferentially expressed genes are associated with pollen fertility, pollen germination and anther dehiscence in rice. BMC Genomics. 2015;16(1):101.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sekhon RS, Lin H, Childs KL, Hansey CN, Buell CR, de Leon N, Kaeppler SM. Genome-wide atlas of transcription during maize development. Plant J. 2011;66(4):553–63.
Article
CAS
PubMed
Google Scholar
Stelpflug SC, Sekhon RS, Vaillancourt B, Hirsch CN, Buell CR, de Leon N, Kaeppler SM. An Expanded Maize Gene Expression Atlas based on RNA Sequencing and its Use to Explore Root Development. Plant Genome. 2016;9(1). https://doi.org/10.1186/s12870-019-1897-5
Rogers ED, Benfey PN. Regulation of plant root system architecture: implications for crop advancement. Curr Opin Biotech. 2015;32:93–8.
Article
CAS
PubMed
Google Scholar
Hochholdinger F, Tuberosa R. Genetic and genomic dissection of maize root development and architecture. Curr Opin Plant Biol. 2009;12(2):172–7.
Article
CAS
PubMed
Google Scholar
Xue G-P, Rae AL, White RG, Drenth J, Richardson T, McIntyre CL. A strong root-specific expression system for stable transgene expression in bread wheat. Plant Cell Rep. 2016;35(2):469–81.
Article
CAS
PubMed
Google Scholar
Liu Y-H, Jia S-R. Vascular-specific promoters and cis-regulatory elements. Chin J Biotechnol. 2003;19(2):131–5.
CAS
Google Scholar
Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 1999;27(1):297–300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30(1):325–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benfey PN, Ren L, Chua NH. The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J. 1989;8(8):2195–202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keller B, Baumgartner C. Vascular-specific expression of the bean GRP 1.8 gene is negatively regulated. Plant Cell. 1991;3(10):1051–61.
CAS
PubMed
PubMed Central
Google Scholar
Fehlberg V, Vieweg MF, Dohmann EM, Hohnjec N, Puhler A, Perlick AM, Kuster H. The promoter of the leghaemoglobin gene VfLb29: functional analysis and identification of modules necessary for its activation in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots. J Exp Bot. 2005;56(413):799–806.
Article
CAS
PubMed
Google Scholar
Dunn MA, White AJ, Vural S, Hughes MA. Identification of promoter elements in a low-temperature-responsive gene (blt4.9) from barley (Hordeum vulgare L.). Plant Mol Biol. 1998;38(4):551–64.
Article
CAS
PubMed
Google Scholar
Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell. 1993;5(11):1529–39.
CAS
PubMed
PubMed Central
Google Scholar
Lopez F, Bousser A, Sissoeff I, Hoarau J, Mahe A. Characterization in maize of ZmTIP2-3, a root-specific tonoplast intrinsic protein exhibiting aquaporin activity. J Exp Bot. 2004;55(396):539–41.
Article
CAS
PubMed
Google Scholar
Rodrigues MI, Bravo JP, Sassaki FT, Severino FE, Maia IG. The tonoplast intrinsic aquaporin (TIP) subfamily of Eucalyptus grandis: characterization of EgTIP2, a root-specific and osmotic stress-responsive gene. Plant Sci. 2013;213:106–13.
Article
CAS
PubMed
Google Scholar
Mekawy AMM, Assaha DVM, Munehiro R, Kohnishi E, Nagaoka T, Ueda A, Saneoka H. Characterization of type 3 metallothionein-like gene (OsMT-3a) from rice, revealed its ability to confer tolerance to salinity and heavy metal stresses. Environ Exp Bot. 2018;147:157–66.
Article
CAS
Google Scholar
de Framond AJ. A metallothionein-like gene from maize (Zea mays). Cloning and characterization. FEBS Lett. 1991;290(1–2):103–6.
Article
PubMed
Google Scholar
Janni M, Di Giovanni M, Roberti S, Capodicasa C, D'Ovidio R. Characterization of expressed Pgip genes in rice and wheat reveals similar extent of sequence variation to dicot PGIPs and identifies an active PGIP lacking an entire LRR repeat. Theor Appl Genet. 2006;113(7):1233–45.
Article
CAS
PubMed
Google Scholar
D'Ovidio R, Roberti S, Di Giovanni M, Capodicasa C, Melaragni M, Sella L, Tosi P, Favaron F. The characterization of the soybean polygalacturonase-inhibiting proteins (Pgip) gene family reveals that a single member is responsible for the activity detected in soybean tissues. Planta. 2006;224(3):633–45.
Article
CAS
PubMed
Google Scholar
Federici L, Di Matteo A, Fernandez-Recio J, Tsernoglou D, Cervone F. Polygalacturonase inhibiting proteins: players in plant innate immunity? Trends Plant Sci. 2006;11(2):65–70.
Article
CAS
PubMed
Google Scholar
Manfredini C, Sicilia F, Ferrari S, Pontiggia D, Salvi G, Caprari C, Lorito M, Lorenzo GD. Polygalacturonase-inhibiting protein 2 of Phaseolus vulgaris inhibits BcPG1, a polygalacturonase of Botrytis cinerea important for pathogenicity, and protects transgenic plants from infection. Physiol Mol Plant P. 2005;67(2):108–15.
Article
CAS
Google Scholar
Li R, Rimmer R, Yu M, Sharpe AG, Séguin-Swartz G, Lydiate D, Hegedus DD. Two Brassica napus polygalacturonase inhibitory protein genes are expressed at different levels in response to biotic and abiotic stresses. Planta. 2003;217(2):299–308.
Article
CAS
PubMed
Google Scholar
De Lorenzo G. D'Ovidio R, Cervone F: the role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi. Annu Rev Phytopathol. 2001;39(1):313–35.
Article
PubMed
Google Scholar
Ringli C. The hydroxyproline-rich glycoprotein domain of the Arabidopsis LRX1 requires Tyr for function but not for insolubilization in the cell wall. Plant J. 2010;63(4):662–9.
Article
CAS
PubMed
Google Scholar
Sujkowska-Rybkowska M, Borucki W. Accumulation and localization of extensin protein in apoplast of pea root nodule under aluminum stress. Micron. 2014;67:10–9.
Article
CAS
PubMed
Google Scholar
Velasquez SM, Ricardi MM, Poulsen CP, Oikawa A, Dilokpimol A, Halim A, Mangano S, Denita Juarez SP, Marzol E, Salgado Salter JD, et al. Complex regulation of prolyl-4-hydroxylases impacts root hair expansion. Mol Plant. 2015;8(5):734–46.
Article
CAS
PubMed
Google Scholar
Yuan JS, Reed A, Chen F, Stewart CN Jr. Statistical analysis of real-time PCR data. BMC Bioinformatics. 2006;7:85.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miller M, Tagliani L, Wang N, Berka B, Bidney D, Zhao ZY. High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res. 2002;11(4):381–96.
Article
CAS
PubMed
Google Scholar