Renner SS. The relative and absolute frequencies of angiosperm sexual systems: Dioecy, monoecy, gynodioecy, and an updated online database. Am J Bot. 2014;101:1588–96. https://doi.org/10.3732/ajb.1400196.
Article
PubMed
Google Scholar
Hanson MR, Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell. 2004;16:S154–69. https://doi.org/10.1105/tpc.015966.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kazama T. Nakamura, Watanabe, M. Sugita KT. Suppression mechanism of mitochondrial ORF79 accumulation by Rf1 protein in BT-type cytoplasmic male sterile rice. Plant J. 2008;55:619–28. https://doi.org/10.1111/j.1365-313X.2008.03529.x.
Article
CAS
PubMed
Google Scholar
Wang K, Gao F, Ji Y, Liu Y, Dan Z, Yang P, et al. ORFH79 impairs mitochondrial function via interaction with a subunit of electron transport chain complex III in Honglian cytoplasmic male sterile rice. New Phytol. 2013;198:408–18. https://doi.org/10.1111/nph.12180.
Article
CAS
PubMed
Google Scholar
Sabar M, Gagliardi D, Balk J, Leaver C. ORFB is a subunit of F1FO-ATP synthase: insight into the basis of cytoplasmic male sterility in sunflower. EMBO Rep. 2003;4:381–6. https://doi.org/10.1038/sj.embor.embor800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allen JO, Fauron CM, Minx P, Roark L, Oddiraju S, Guan NL, et al. Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics. 2007;177:1173–92. https://doi.org/10.1534/genetics.107.073312.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darracq A, Varré JS, Maréchal-Drouard L, Courseaux A, Castric V, Saumitou-Laprade P, et al. Structural and content diversity of mitochondrial genome in beet: a comparative genomic analysis. Genome Biol Evol. 2011;3:723–36. https://doi.org/10.1093/gbe/evr042.
Article
CAS
PubMed
PubMed Central
Google Scholar
Charlesworth D, Laporte V. The male-sterility polymorphism of Silene vulgaris: analysis of genetic data: from two populations and comparison with Thymus vulgaris. Genetics. 1998;150:1267–82.
CAS
PubMed
PubMed Central
Google Scholar
Desfeux C, Maurice S, Henry JP, Lejeune B, Gouyon PH. Reproductive Systems in the Genus Silene. Evolution of reproductive systems in the genus Silene. Proc R Soc B Biol Sci. 1996;263:409–14.
Article
CAS
Google Scholar
Casimiro-Soriguer I, Buide ML, Narbona E. Diversity of sexual systems within different lineages of the genus Silene. AOB Plants. 2015;7:plv037. doi:https://doi.org/10.1093/aobpla/plv037
Städler T, Delph LF. Ancient mitochondrial haplotypes and evidence for intragenic recombination in a gynodioecious plant. Proc Natl Acad Sci U S A. 2002;99:11730–5. https://doi.org/10.1073/pnas.182267799.
Article
CAS
PubMed
PubMed Central
Google Scholar
Touzet P, Delph LF. The effect of breeding system on polymorphism in mitochondrial genes of silene. Genetics. 2009;181:631–44. https://doi.org/10.1534/genetics.108.092411.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mower JP, Touzet P, Gummow JS, Delph LF, Palmer JD. Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants. BMC Evol Biol. 2007;7:7. https://doi.org/10.1186/1471-2148-7-135.
Article
CAS
Google Scholar
Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE, Palmer JD, et al. Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol. 2012;10: e1001241. doi:0.1371/journal.pbio.1001241.
Sloan DB, Alverson AJ, Wu M, Palmer JD, Taylor DR. Recent acceleration of plastid sequence and structural evolution coincides with extreme mitochondrial divergence in the angiosperm genus Silene. Genome Biol Evol. 2012;4:294–306. https://doi.org/10.1093/gbe/evs006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sloan DB, Müller K, McCauley DE, Taylor DR, Storchová H. Intraspecific variation in mitochondrial genome sequence, structure, and gene content in Silene vulgaris, an angiosperm with pervasive cytoplasmic male sterility. New Phytol. 2012;196:1228–39. https://doi.org/10.1111/j.1469-8137.2012.04340.x.
Article
CAS
PubMed
Google Scholar
Sloan DB, Triant DA, Forrester NJ, Bergner LM, Wu M, Taylor DR. A recurring syndrome of accelerated plastid genome evolution in the angiosperm tribe Sileneae (Caryophyllaceae). Mol Phylogenet Evol. 2014;72:82–9. https://doi.org/10.1016/j.ympev.2013.12.004.
Article
CAS
PubMed
Google Scholar
Štorchová H, Stone JD, Sloan DB, Abeyawardana OAJ, Muller K, Walterová J, Pažoutová M. Homologous recombination changes the context of cytochrome b transcription in the mitochondrial genome of Silene vulgaris KRA. BMC Genomics. 2018;19:874. https://doi.org/10.1186/s12864-018-5254-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stone JD, Koloušková P, Sloan DB, Štorchová H. Non-coding RNA may be associated with cytoplasmic male sterility in Silene vulgaris. J Exp Bot. 2017;68:1599–612. https://doi.org/10.1093/jxb/erx057.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abbate JL, Antonovics J. Elevational disease distribution in a natural plant–pathogen system: insights from changes across host populations and climate. Oikos. 2014;123:1126–36. https://doi.org/10.1111/oik.01001.
Article
Google Scholar
Li ZF, Zhang YC, Chen YQ. MiRNAs and lncRNAs in reproductive development. Plant Sci. 2015;238:46–52. https://doi.org/10.1016/j.plantsci.2015.05.017.
Article
CAS
PubMed
Google Scholar
Wu J, Zhang M, Zhang B, Zhang X, Guo L, Qi T, et al. Genome-wide comparative transcriptome analysis of CMS-D2 and its maintainer and restorer lines in upland cotton. BMC Genomics. 2017;18:454. https://doi.org/10.1186/s12864-017-3841-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamid R, Tomar RS, Marashi H, Malekzadeh S, Golakiya BA, Mohsenpour M. Transcriptome profiling and cataloging differential gene expression in floral buds of fertile and sterile lines of cotton (Gossypium hirsutum L.). Gene. 2018;660:80–91. https://doi.org/10.1016/j.gene.2018.03.070.
Article
CAS
PubMed
Google Scholar
Plöchinger M, Schwenkert S, von Sydow L, Schroder WP, Meurer J. Functional update of the auxiliary TerC and ALB3 in maintenance and assembly of PSII. Front Plant Sci. 2016;7:423. https://doi.org/10.3389/fpls.2016.00423.
Article
PubMed
PubMed Central
Google Scholar
Castandet B, Hotto AM, Strickler SR, Stern DB. ChloroSeq, an optimized chloroplast RNA-Seq bioinformatic pipeline, reveals Remodeling of the organellar transcriptome under heat stress. G3-Genes Genomes Genet. 2016;6:2817–27. https://doi.org/10.1534/g3.116.030783.
Article
CAS
Google Scholar
Hein A, Polsakiewicz M, Knoop V. Frequent chloroplast RNA editing in early-branching flowering plants: pilot studies on angiosperm-wide coexistence of editing sites and their nuclear specificity factors. BMC Evol Biol. 2016;16:23. https://doi.org/10.1186/s12862-016-0589-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang W, Zhang W, Wu Y, Maliga P, Messing J. RNA editing in chloroplasts of Spirodela polyrhiza, an aquatic monocotelydonous species. PLoS One. 2015;10:e0140285. https://doi.org/10.1371/journal.pone.0140285.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang M, Liu H, Ge L, Xing G, Wang M, Weining S, et al. Identification and analysis of RNA editing sites in the chloroplast transcripts of Aegilops tauschii L. Genes. 2017;8:13. https://doi.org/10.3390/genes8010013.
Article
CAS
Google Scholar
Ruwe H, Castandet B, Schmitz-Linneweber C, Stern DB. Arabidopsis chloroplast quantitative editotype. FEBS Lett. 2013;587:1429–33. https://doi.org/10.1016/j.febslet.2013.03.022.
Article
CAS
PubMed
Google Scholar
Tangphatsornruang S, Uthaipaisanwong P, Sangsrakru D, Chanprasert J, Yoocha T, Jomchai N, et al. Characterization of the complete chloroplast genome of Hevea brasiliensis reveals genome rearrangement, RNA editing sites and phylogenetic relationships. Gene. 2011;475:104–12. https://doi.org/10.1016/j.gene.2011.01.002.
Article
CAS
PubMed
Google Scholar
Hirose T, Kusumegi T, Tsudzuki T, Sugiura M. RNA editing sites in tobacco chloroplast transcripts : editing as a possible regulator of chloroplast RNA polymerase activity. Mol Gen Genet. 1999;262:462–7.
Article
CAS
PubMed
Google Scholar
Lin C, Ko C, Kuo C, Liu M, Schafleitner R. Transcriptional slippage and RNA editing increase the diversity of transcripts in chloroplasts : insight from deep sequencing of Vigna radiata genome and transcriptome. PLoS One. 2015;10:e0129396. https://doi.org/10.1371/journal.pone.0129396.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berardi AE, Fields PD, Abbate JL, Taylor DR. Elevational divergence and clinal variation in floral color and leaf chemistry in Silene vulgaris. Am J Bot. 2016;103:1508–23. https://doi.org/10.3732/ajb.1600106.
Article
CAS
PubMed
Google Scholar
Tseng CC, Lee CJ, Chung YT, Sung TY, Hsieh MH. Differential regulation of Arabidopsis plastid gene expression and RNA editing in non-photosynthetic tissues. Plant Mol Biol. 2013;82:375–92. https://doi.org/10.1007/s11103-013-0069-5.
Article
CAS
PubMed
Google Scholar
Maier RM, Neckermann K, Igloi GL, Kossel H. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol. 1995;251:614–28.
Article
CAS
PubMed
Google Scholar
Sloan DB. Nuclear and mitochondrial RNA editing systems have opposite effects on protein diversity. Biol Lett. 2017;13:20170314. https://doi.org/10.1098/rsbl.2017.0314.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kahlau S, Bock R. Plastid transcriptomics and translatomics of tomato fruit development and chloroplast-to-chromoplast differentiation : chromoplast gene expression largely serves the production of a single protein. Plant Cell. 2008;20:856–74. https://doi.org/10.1105/tpc.107.055202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valkov VT, Scotti N, Kahlau S, Maclean D, Grillo S, Gray JC, et al. Genome-wide analysis of plastid gene expression in potato leaf chloroplasts and tuber amyloplasts: transcriptional and posttranscriptional control. Plant Physiol. 2009;150:2030–44. https://doi.org/10.1104/pp.109.140483.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swiatek M, Kuras R, Sokolenko A, Higgs D, Olive J, Cinque G, et al. The chloroplast gene ycf9 encodes a photosystem II ( PSII ) core subunit, PsbZ, that participates in PSII supramolecular architecture. Plant Cell. 2001;13:1347–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei X, Su X, Cao P, Liu X, Chang W, Li M, et al. Structure of spinach photosystem II – LHCII supercomplex at 3.2 Å resolution. Nature. 2016;534:69–74. https://doi.org/10.1038/nature18020.
Article
CAS
PubMed
Google Scholar
Kawabe A, Furihata HY, Tsujino Y, Kawanabe T, Fujii S, Yoshida T. Divergence of RNA editing among Arabidopsis species. Plant Sci. 2019;280:241–7. https://doi.org/10.1016/j.plantsci.2018.12.009.
Article
CAS
PubMed
Google Scholar
Zghidi W, Merendino L, Cottet A, Mache R, Lerbs-Mache S. Nucleus-encoded plastid sigma factor SIG3 transcribes specifically the psbN gene in plastids. Nucleic Acids Res. 2007;35:455–64. https://doi.org/10.1093/nar/gkl1067.
Article
CAS
PubMed
Google Scholar
Chevalier F, Ghulam MM, Rondet D, Pfannschmidt T, Merendino L, Lerbs-Mache S. Characterization of the psbH precursor RNAs reveals a precise endoribonuclease cleavage site in the psbT/ psbH intergenic region that is dependent on psbN gene expression. Plant Mol Biol. 2015;88:357–67. https://doi.org/10.1007/s11103-015-0325-y.
Article
CAS
PubMed
Google Scholar
Zghidi-Abouzid O, Merendino L, Buhr F, Ghulam MM, Lerbs-Mache S. Characterization of plastid psbT sense and antisense RNAs. Nucleic Acids Res. 2011;39:5379–87. https://doi.org/10.1093/nar/gkr143.
Article
CAS
PubMed
PubMed Central
Google Scholar
Georg J, Honsel A, Rennenberg H, Hess WR. Rapid report a long antisense RNA in plant chloroplasts. New Phytol. 2010;4:615–22. https://doi.org/10.1111/j.1469-8137.2010.03203.x.
Article
CAS
Google Scholar
Bollenbach TJ, Sharwood RE, Gutierrez R, Lerbs-Mache S, Stern DB. The RNA-binding proteins CSP41a and CSP41b may regulate transcription and translation of chloroplast-encoded RNAs in Arabidopsis. Plant Mol Biol. 2009;69:541–52. https://doi.org/10.1007/s11103-008-9436-z.
Article
CAS
PubMed
Google Scholar
Manavski N, Schmid LM, Meurer J. RNA-stabilization factors in chloroplasts of vascular plants. Essays Biochem. 2018;62:51–64. https://doi.org/10.1042/EBC20170061.
Article
PubMed
PubMed Central
Google Scholar
Hotto AM, Schmitz RJ, Fei Z, Ecker JR, Stern DB. Unexpected diversity of chloroplast noncoding RNAs as revealed by deep sequencing of the Arabidopsis transcriptome. G3-Genes Genomes Genet. 2011;1:559–70. https://doi.org/10.1534/g3.111.000752.
Article
CAS
Google Scholar
Chen H, Zhang J, Yuan G, Liu C. Complex interplay among DNA modification, noncoding RNA expression and protein-coding RNA expression in Salvia miltiorrhiza chloroplast genome. PLoS One. 2014;9:e99314. https://doi.org/10.1371/journal.pone.0099314.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marsden-Jones EM, Turrill WB. The bladder campions. London: The Ray Society; 1957.
Google Scholar
Hackl T, Hedrich R, Schultz J, Forster F. Sequence analysis proovread : large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics. 2014;30:3004–11. https://doi.org/10.1093/bioinformatics/btu392.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k -mer weighting and repeat separation. Genome Res. 2017;27:722–36. https://doi.org/10.1101/gr.215087.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beier S, Thiel T, Munich T, Scholz U, Mascher M. Sequence analysis MISA-web: a web server for microsatellite prediction. Bioiformatics. 2017;33:2583–2585. doi: 0.1093/bioinformatics/btx198.
Robison TA, Wolf PG. ReFernment: an R package for annotating RNA editing in plastid genomes. Appl Plant Sci. 2019;7:e1216. https://doi.org/10.1002/aps3.1216.
Article
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability article fast track. Mol Biol Evol. 2013;30:772–80. https://doi.org/10.1093/molbev/mst010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simmons MP, Ochoterena H. Society of Systematic Biologists gaps as characters in sequence-based phylogenetic analyses. Syst Biol. 2000;49:369–81.
Article
CAS
PubMed
Google Scholar
Salinas DR, Little DP. 2MATRIX : A utility for indel coding and phylogenetic MATRIX concatenation. Appl Plant Sci. 2014;2:1300083. https://doi.org/10.3732/apps.1300083.
Article
Google Scholar
Stamatakis A. RAxML version 8 : a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3. https://doi.org/10.1093/bioinformatics/btu033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42. https://doi.org/10.1093/sysbio/sys029.
Article
PubMed
PubMed Central
Google Scholar
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans. LA: IEEE; p 1–8. https://doi.org/10.1109/GCE.2010.5676129.
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–2. https://doi.org/10.1093/bioinformatics/btp187.
Article
CAS
PubMed
Google Scholar
Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics. 2010;26:873–81. https://doi.org/10.1093/bioinformatics/btq057.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment / map format and SAMtools. Bioinformatics. 2009;25:2078–9. https://doi.org/10.1093/bioinformatics/btp352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thorvaldsdottir P. Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2012;14:178–92. https://doi.org/10.1093/bib/bbs017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9:357–9. https://doi.org/10.1038/nmeth.1923.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Pachter L, Salzberg SL. TopHat : discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25:1105–11. https://doi.org/10.1093/bioinformatics/btp120.
Article
CAS
PubMed
PubMed Central
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis A, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303. https://doi.org/10.1101/gr.107524.110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012;131:281–5. https://doi.org/10.1007/s12064-012-0162-3.
Article
CAS
PubMed
Google Scholar