Jin J, Kim J. Cold stress signaling networks in Arabidopsis. J Plant Biol. 2013;56(2):69–76.
Article
CAS
Google Scholar
Zhou MQ, Shen C, Wu LH, Tang KX, Lin J. CBF-dependent signaling pathway: a key responder to low temperature stress in plants. Crit Rev Biotechnol. 2011;31(2):186–92.
Article
PubMed
CAS
Google Scholar
Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, Diaz C, Golding GB, Gray GR, Weretilnyk EA, et al. Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol. 2006;140(4):1437–50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bg DLR, Yun SJ, Herath V, Xu F, Park MR, Lee JI, Kim KY. Phenotypic, physiological, and molecular evaluation of rice chilling stress response at the vegetative stage. Methods Mol Biol. 2013;956:227–41.
Article
CAS
Google Scholar
Gehan MA, Greenham K, Mockler TC, Mcclung CR. Transcriptional networks — crops, clocks, and abiotic stress. Curr Opin Plant Biol. 2015;24:39–46.
Article
PubMed
CAS
Google Scholar
Janska A, Marsik P, Zelenkova S, Ovesna J. Cold stress and acclimation - what is important for metabolic adjustment? Plant Biol (Stuttg). 2010;12(3):395–405.
Article
CAS
Google Scholar
Majlath I, Darko E, Palla B, Nagy Z, Janda T, Szalai G. Reduced light and moderate water deficiency sustain nitrogen assimilation and sucrose degradation at low temperature in durum wheat. J Plant Physiol. 2016;191:149–58.
Article
PubMed
CAS
Google Scholar
Hu Z, Fan J, Xie Y, Amombo E, Liu A, Gitau MM, Khaldun ABM, Chen L, Fu J. Comparative photosynthetic and metabolic analyses reveal mechanism of improved cold stress tolerance in bermudagrass by exogenous melatonin. Plant Physiol Biochem. 2016;100:94–104.
Article
PubMed
CAS
Google Scholar
Zheng YL, Li WQ, Sun WB. Effects of acclimation and pretreatment with abscisic acid or salicylic acid on tolerance of Trigonobalanus doichangensis to extreme temperatures. Biol Plant. 2015;59(2):382–8.
Article
CAS
Google Scholar
Theocharis A, Clement C, Barka EA. Physiological and molecular changes in plants grown at low temperatures. Planta. 2012;235(6):1091–105.
Article
PubMed
CAS
Google Scholar
Trischuk RG, Schilling BS, Low NH, Gray GR, Gusta LV. Cold acclimation, de-acclimation and re-acclimation of spring canola, winter canola and winter wheat: the role of carbohydrates, cold-induced stress proteins and vernalization. Environ Exp Bot. 2014;106(1):156–63.
Article
CAS
Google Scholar
Li XD, Zhuang KY, Liu ZM, Yang DY, Ma NN, Meng QW. Overexpression of a novel NAC-type tomato transcription factor, SlNAM1, enhances the chilling stress tolerance of transgenic tobacco. J Plant Physiol. 2016;204:54–65.
Article
PubMed
CAS
Google Scholar
Zhu JK. Abiotic stress signaling and responses in plants. Cell. 2016;167(2):313–24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shi Y, Ding Y, Yang S. Cold signal transduction and its interplay with phytohormones during cold acclimation. Plant Cell Physiol. 2015;56(1):7–15.
Article
PubMed
CAS
Google Scholar
Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, et al. COLD1 confers chilling tolerance in rice. Cell. 2015;160(6):1209–21.
Article
PubMed
CAS
Google Scholar
Chinnusamy V, Zhu J, Zhu J-K. Cold stress regulation of gene expression in plants. Trends Plant Sci. 2007;12(10):444–51.
Article
PubMed
CAS
Google Scholar
Jagloottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science. 1998;280(5360):104–6.
Article
CAS
Google Scholar
Jeknic Z, Pillman KA, Dhillon T, Skinner JS, Veisz O, Cuesta-Marcos A, Hayes PM, Jacobs AK, Chen THH, Stockinger EJ. Hv-CBF2A overexpression in barley accelerates COR gene transcript accumulation and acquisition of freezing tolerance during cold acclimation. Plant Mol Biol. 2014;84(1–2):67–82.
Article
PubMed
CAS
Google Scholar
Vanburen R, Bryant D, Edger PP, Tang H, Burgess D, Challabathula D, Spittle K, Hall R, Gu J, Lyons E. Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum. Nature. 2015;527(7579):508.
Article
PubMed
CAS
Google Scholar
Lan T, Renner T, Ibarra-Laclette E, Farr KM, Chang TH, Cervantes-Pérez SA, Zheng C, Sankoff D, Tang H, Purbojati RW. Long-read sequencing uncovers the adaptive topography of a carnivorous plant genome. Proc Natl Acad Sci U S A. 2017;114(22):4433–41.
Article
CAS
Google Scholar
Chaisson MJ, Huddleston J, Dennis MY, Sudmant PH, Malig M, Hormozdiari F, Antonacci F, Surti U, Sandstrom R, Boitano M. Resolving the complexity of the human genome using single-molecule sequencing. Nature. 2014;517(7536):608–11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen X, Bracht JR, Goldman AD, Dolzhenko E, Clay DM, Swart EC, Perlman DH, Doak TG, Stuart A, Amemiya CT. The architecture of a scrambled genome reveals massive levels of genomic rearrangement during development. Cell. 2014;158(5):1187–98.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang T, Zhao X, Wang W, Pan Y, Huang L, Liu X, Zong Y, Zhu L, Yang D, Fu B. Comparative transcriptome profiling of chilling stress responsiveness in two contrasting rice genotypes. PLoS One. 2012;7(8):e43274.
Article
PubMed
PubMed Central
CAS
Google Scholar
Karki A, Horvath DP, Sutton F. Induction of DREB2A pathway with repression of E2F, jasmonic acid biosynthetic and photosynthesis pathways in cold acclimation-specific freeze-resistant wheat crown. Funct Integr Genomics. 2013;13(1):57–65.
Article
PubMed
CAS
Google Scholar
Xu W, Li R, Zhang N, Ma F, Jiao Y, Wang Z. Transcriptome profiling of Vitis amurensis, an extremely cold-tolerant Chinese wild Vitis species, reveals candidate genes and events that potentially connected to cold stress. Plant Mol Biol. 2014;86(4–5):527–41.
Article
PubMed
CAS
Google Scholar
Xu Z, Peters RJ, Weirather J, Luo H, Liao B, Zhang X, Zhu Y, Ji A, Zhang B, Hu S, et al. Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis. Plant J. 2015;82(6):951–61.
Article
PubMed
CAS
Google Scholar
Yang LF, Jin YH, Huang W, Sun Q, Liu F, Huang XZ. Full-length transcriptome sequences of ephemeral plant Arabidopsis pumila provides insight into gene expression dynamics during continuous salt stress. BMC Genomics. 2018;19:717.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chao Y, Yuan J, Li S, Jia S, Han L, Xu L. Analysis of transcripts and splice isoforms in red clover (Trifolium pratense L.) by single-molecule long-read sequencing. BMC Plant Biol. 2018;18(1):300.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang Y, Yu Q, Yang Y, Su Y, Ahmad W, Guo J, Gao S, Xu L, Que Y. Identification of cold-related miRNAs in sugarcane by small RNA sequencing and functional analysis of a cold inducible ScmiR393 to cold stress. Environ Exp Bot. 2018;155:464–76.
Article
CAS
Google Scholar
Shen C, Li D, He R, Fang Z, Xia Y, Gao J, Shen H, Cao M. Comparative transcriptome analysis of RNA-seq data for cold-tolerant and cold-sensitive rice genotypes under cold stress. J Plant Biol. 2014;57(6):337–48.
Article
CAS
Google Scholar
Zhang LL, Zhao MG, Tian QY, Zhang WH. Comparative studies on tolerance of Medicago truncatula and Medicago falcata to freezing. Planta. 2011;234(3):445–57.
Article
PubMed
CAS
Google Scholar
Riday H, Brummer EC. Forage yield Heterosis in alfalfa. Crop Sci. 2002;42(3):716–23.
Article
Google Scholar
Gréard C, Barre P, Flajoulot S, Santoni S, Julier B. Sequence diversity of five Medicago sativa genes involved in agronomic traits to set up allele mining in breeding. Mol Breed. 2018;38(12):41.
Article
CAS
Google Scholar
Tan J, Zhuo C, Guo Z. Nitric oxide mediates cold- and dehydration-induced expression of a novel MfHyPRP that confers tolerance to abiotic stress. Physiol Plant. 2013;149(3):310–20.
PubMed
CAS
Google Scholar
Qu YT, Duan M, Zhang ZQ, Dong JL, Wang T. Overexpression of the Medicago falcata NAC transcription factor MfNAC3 enhances cold tolerance in Medicago truncatula. Environ Exp Bot. 2016;129:67–76.
Article
CAS
Google Scholar
Miao Z, Xu W, Li D, Hu X, Liu J, Zhang R, Tong Z, Dong J, Su Z, Zhang L, et al. De novo transcriptome analysis of Medicago falcata reveals novel insights about the mechanisms underlying abiotic stress-responsive pathway. BMC Genomics. 2015;16:818.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu M, Wang TZ, Zhang WH. Sodium extrusion associated with enhanced expression of SOS1 underlies different salt tolerance between Medicago falcata and Medicago truncatula seedlings. Environ Exp Bot. 2015;110:46–55.
Article
CAS
Google Scholar
Chen H, Chen X, Chen D, Li J, Zhang Y, Wang A. A comparison of the low temperature transcriptomes of two tomato genotypes that differ in freezing tolerance: Solanum lycopersicum and Solanum habrochaites. BMC Plant Biol. 2015;15(1):132.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tondelli A, Francia E, Barabaschi D, Pasquariello M, Pecchioni N. Inside the CBF locus in Poaceae. Plant Sci. 2011;180(1):39–45.
Article
PubMed
CAS
Google Scholar
Dubé M-P, Castonguay Y, Cloutier J, Michaud J, Bertrand A. Characterization of two novel cold-inducible K3 dehydrin genes from alfalfa (Medicago sativa spp. sativa L.). Theor Appl Genet. 2013;126(3):823–35.
Article
PubMed
CAS
Google Scholar
Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK. Antioxidative response mechanisms in halophytes: their role in stress defence. J Genet. 2006;85(3):237–54.
Article
CAS
PubMed
Google Scholar
Mittler R, Vanderauwera S, Gollery M, Van BF. Reactive oxygen gene network of plants. Trends Plant Sci. 2004;9(10):490–8.
Article
PubMed
CAS
Google Scholar
Huot B, Castroverde CDM, Velasquez AC, Hubbard E, Pulman JA, Yao J, Childs KL, Tsuda K, Montgomery BL, He SY. Dual impact of elevated temperature on plant defence and bacterial virulence in Arabidopsis. Nat Commun. 2017;8(1):1808.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mohapatra SS, Wolfraim L, Poole RJ, Dhindsa RS. Molecular cloning and relationship to freezing tolerance of cold-acclimation-specific genes of alfalfa. Plant Physiol. 1989;89(1):375–80.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fan L, Li R, Pan J, Ding Z, Lin J. Endocytosis and its regulation in plants. Trends Plant Sci. 2015;20(6):388–97.
Article
PubMed
CAS
Google Scholar
Leborgne-Castel N, Luu DT. Regulation of endocytosis by external stimuli in plant cells. Plant Biosystems. 2009;143(3):630–5.
Article
Google Scholar
Rihan HZ, Al-Issawi M, Fuller MP. Advances in physiological and molecular aspects of plant cold tolerance. J Plant Interact. 2017;12(1):143–57.
Article
CAS
Google Scholar
Pan H, Wang Y, Zhang Y, Zhou T, Fang C, Nan P, Wang X, Li X, Wei Y, Chen J. Phenylalanine ammonia lyase functions as a switch directly controlling the accumulation of calycosin and calycosin-7-O-beta-D-glucoside in Astragalus membranaceus var. mongholicus plants. J Exp Bot. 2008;59(11):3027–37.
Article
PubMed
CAS
Google Scholar
Hummel I, Bourdais G, Gouesbet G, Couee I, Malmberg RL, El Amrani A. Differential gene expression of ARGININE DECARBOXYLASE ADC1 and ADC2 in Arabidopsis thaliana: characterization of transcriptional regulation during seed germination and seedling development. New Phytol. 2004;163(3):519–31.
Article
CAS
PubMed
Google Scholar
Liu X, Bush DR. Expression and transcriptional regulation of amino acid transporters in plants. Amino Acids. 2006;30(2):113–20.
Article
PubMed
CAS
Google Scholar
Zhu XC, Song FB, Liu FL. Altered amino acid profile of arbuscular mycorrhizal maize plants under low temperature stress. J Plant Nutr Soil Sci. 2016;179(2):186–9.
Article
CAS
Google Scholar
Saxena SC, Kaur H, Verma P, Petla BP, Majee M. Osmoprotectants: potential for crop improvement under adverse conditions. 2013.
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9(1):559.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao W, Langfelder P, Fuller T, Dong J, Li A, Hovarth S. Weighted gene coexpression network analysis: state of the art. J Biopharm Stat. 2010;20(2):281–300.
Article
PubMed
Google Scholar
Hoagland D, Arnon D. The water culture method for growing plants without soil. Calif Agr Expt S. 1950;347(1):32.
Google Scholar
Iii DPL, Tan DTJE, Botany E. Understanding the response of winter cereals to freezing stress through freeze-fixation and 3D reconstruction of ice formation in crowns. Environ Exp Bot. 2014;106(1):24–33.
Google Scholar
Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 2006;45(4):523–39.
Article
PubMed
CAS
Google Scholar
Peever TL, Higgins VJ. Electrolyte leakage, Lipoxygenase, and lipid peroxidation induced in tomato leaf tissue by specific and nonspecific elicitors from Cladosporium fulvum. Plant Physiol. 1989;90(3):867–75.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang WB, Kim YH, Lee HS, Kim KY, Deng XP, Kwak SS. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Biochem. 2009;47(7):570–7.
Article
PubMed
CAS
Google Scholar
Giannopolitis CN, Ries SK. Superoxide dismutases: I. occurrence in higher plants. Plant Physiol. 1977;59(2):309–14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maehly AC. The assay of catalases and peroxidases. In: Glick D, editor. Methods biochemical analysis. Hoboken: Wiley; 2006. p. 357–424.
Chapter
Google Scholar
Zaharieva T, Yamashita K, Matsumoto H. Iron deficiency induced changes in Ascorbate content and enzyme activities related to Ascorbate metabolism in cucumber roots. Plant Cell Physiol. 1999;40(3):273–80.
Article
CAS
Google Scholar
Elstner EF, Heupel A. Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem. 1976;70(2):616–20.
Article
PubMed
CAS
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54.
Article
PubMed
CAS
Google Scholar
Hissin PJ, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 1976;74(1):214–26.
Article
CAS
PubMed
Google Scholar
Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39(1):205–7.
Article
CAS
Google Scholar
Dreywood R. Qualitative test for carbohydrate material. Ind Eng Chem Anal Ed. 1946;18(8):499.
Article
CAS
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402.
Article
PubMed
PubMed Central
CAS
Google Scholar
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11(2):R14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39(Web Server issue):W316–22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.
Article
PubMed
PubMed Central
CAS
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.
Article
PubMed
PubMed Central
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 ΔΔC T method. Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar