Forde B, Lorenzo H. The nutritional control of root development. Plant Soil. 2001;232:51–68.
Article
CAS
Google Scholar
Osmont KS, Sibout R, Hardtke CS. Hidden branches: developments in root system architecture. Annu Rev Plant Biol. 2007;58:93–113.
Article
PubMed
CAS
Google Scholar
Varney G, Canny M, Wang X, McCully M. The branch roots of Zea. I. First order branches, their number, sizes and division into classes. Ann Bot. 1991;67:357.
Article
Google Scholar
Lecompte F, Pagès L. Apical diameter and branching density affect lateral root elongation rates in banana. Environ Exp Bot. 2007;59:243–51.
Article
Google Scholar
Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, et al. Local, efflux-dependent Auxin gradients as a common module for plant organ formation. Cell. 2003;115:591–602.
Article
PubMed
Google Scholar
Smet ID, Tetsumura T, Rybel BD, dit Frey NF, Laplaze L, Casimiro I, et al. Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development. 2007;134:681–90.
Article
PubMed
CAS
Google Scholar
Lucas M, Godin C, Jay-Allemand C, Laplaze L. Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation. J Exp Bot. 2008;59:55–66.
Article
PubMed
CAS
Google Scholar
Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, et al. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. PNAS. 2008;105:8790–4.
Article
PubMed
PubMed Central
Google Scholar
Petersson SV, Johansson AI, Kowalczyk M, Makoveychuk A, Wang JY, Moritz T, et al. An Auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell. 2009;21:1659–68.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yu P, Eggert K, Wirén N, von Li C, Hochholdinger F. Cell-type specific gene expression analyses by RNA-Seq reveal local high nitrate triggered lateral root initiation in shoot-borne roots of maize by modulating auxin-related cell cycle-regulation. Plant Physiol. 2015;169:690–704 00888.2015.
Article
PubMed
PubMed Central
CAS
Google Scholar
Himanen K, Boucheron E, Vanneste S, de Almeida Engler J, Inzé D, Beeckman T. Auxin-Mediated Cell Cycle Activation during Early Lateral Root Initiation. Plant Cell. 2002;14:2339–51.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ren H, Santner A, Del JP, Murray JA, Estelle M. Degradation of the cyclin-dependent kinase inhibitor KRP1 is regulated by two different ubiquitin E3 ligases. Plant J. 2008;53:705–16.
Article
PubMed
CAS
Google Scholar
Nieuwland J, Scofield S, Murray JAH. Control of division and differentiation of plant stem cells and their derivatives. Semin Cell Dev Biol. 2009;20:1134–42.
Article
PubMed
CAS
Google Scholar
Sanz L, Dewitte W, Forzani C, Patell F, Nieuwland J, Wen B, et al. The Arabidopsis D-Type Cyclin CYCD2;1 and the Inhibitor ICK2/KRP2 Modulate Auxin-Induced Lateral Root Formation. Plant Cell. 2011;23:641–60 tpc.110.080002.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vanneste S, Coppens F, Lee E, Donner TJ, Xie Z, Isterdael GV, et al. Developmental regulation of CYCA2s contributes to tissue-specific proliferation in Arabidopsis. EMBO J. 2011;30:3430–41.
Article
PubMed
PubMed Central
CAS
Google Scholar
Marchant A, Bhalerao R, Casimiro I, Eklöf J, Casero PJ, Bennett M, et al. AUX1 promotes lateral root formation by facilitating Indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell. 2002;14:589–97.
Article
PubMed
PubMed Central
CAS
Google Scholar
Marhavý P, Vanstraelen M, Rybel BD, Zhaojun D, Bennett MJ, Beeckman T, et al. Auxin reflux between the endodermis and pericycle promotes lateral root initiation. EMBO J. 2013;32:149–58.
Article
PubMed
CAS
Google Scholar
Marhavý P, Duclercq J, Weller B, Feraru E, Bielach A, Offringa R, et al. Cytokinin controls polarity of PIN1-dependent Auxin transport during lateral root organogenesis. Curr Biol. 2014;24:1031–7.
Article
PubMed
CAS
Google Scholar
de Billy F, Grosjean C, May S, Bennett M, Cullimore JV. Expression studies on AUX1-like genes in Medicago truncatula suggest that Auxin is required at two steps in early nodule development. MPMI. 2001;14:267–77.
Article
PubMed
Google Scholar
Taylor-Teeples M, Lanctot A, Nemhauser JL. As above, so below: Auxin’s role in lateral organ development. Dev Biol. 2016;419:156–64.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fukaki H, Tameda S, Masuda H, Tasaka M. Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J. 2002;29:153–68.
Article
PubMed
CAS
Google Scholar
Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, et al. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell. 2005;17:444–63.
Article
PubMed
PubMed Central
CAS
Google Scholar
Du Y, Scheres B. Lateral root formation and the multiple roles of auxin. J Exp Bot. 2018;69:155–67.
Article
PubMed
CAS
Google Scholar
Lavenus J, Goh T, Guyomarc’h S, Hill K, Lucas M, Voß U, et al. Inference of the Arabidopsis lateral root gene regulatory network suggests a bifurcation mechanism that defines Primordia flanking and central zones. Plant Cell. 2015;27:1368–88.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stoeckle D, Thellmann M, Vermeer JE. Breakout—lateral root emergence in Arabidopsis thaliana. Curr Opin Plant Biol. 2018;41:67–72.
Article
PubMed
Google Scholar
Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell. 2007;19:118–30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Berckmans B, Vassileva V, Schmid SPC, Maes S, Parizot B, Naramoto S, et al. Auxin-dependent cell cycle reactivation through transcriptional regulation of Arabidopsis E2Fa by lateral organ boundary proteins. Plant Cell. 2011;23:3671–83.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gou J, Strauss SH, Tsai CJ, Fang K, Chen Y, Jiang X, et al. Gibberellins regulate lateral root formation in Populus through interactions with Auxin and other hormones. Plant Cell. 2010;22:623–39.
Article
PubMed
CAS
Google Scholar
Shin R, Burch AY, Huppert KA, Tiwari SB, Murphy AS, Guilfoyle TJ, et al. The Arabidopsis transcription factor MYB77 modulates Auxin signal transduction. Plant Cell. 2007;19:2440–53.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao Y, Xing L, Wang X, Hou Y-J, Gao J, Wang P, et al. The ABA Receptor PYL8 Promotes Lateral Root Growth by Enhancing MYB77-Dependent Transcription of Auxin-Responsive Genes. Sci Signal. 2014;7:ra53.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shkolnik-Inbar D, Bar-Zvi D. ABI4 Mediates Abscisic Acid and Cytokinin Inhibition of Lateral Root Formation by Reducing Polar Auxin Transport in Arabidopsis. Plant Cell. 2010;22:3560–73 tpc.110.074641.
Article
PubMed
PubMed Central
CAS
Google Scholar
Negi S, Ivanchenko MG, Muday GK. Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J. 2008;55:175–87.
Article
PubMed
PubMed Central
CAS
Google Scholar
Singh M, Gupta A, Laxmi A. Ethylene acts as a negative regulator of glucose induced lateral root emergence in Arabidopsis. Plant Signal Behav. 2015;10:e1058460.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, et al. Arabidopsis ASA1 is important for Jasmonate-mediated regulation of Auxin biosynthesis and transport during lateral root formation. Plant Cell. 2009;21:1495–511.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sun J, Chen Q, Qi L, Jiang H, Li S, Xu Y, et al. Jasmonate modulates endocytosis and plasma membrane accumulation of the Arabidopsis PIN2 protein. New Phytol. 2011;191:360–75.
Article
PubMed
CAS
Google Scholar
Rademacher W. Growth Retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol. 2000;51:501–31.
Article
PubMed
CAS
Google Scholar
de Almeida AQ, Rosolem CA. Cotton root and shoot growth as affected by application of mepiquat chloride to cotton seeds. Acta Sci Agronomy. 2012;34:61–5.
Google Scholar
Reddy VR, Baker DN, Hodges HF. Temperature and Mepiquat chloride effects on cotton canopy architecture. Agron J. 1990;82:190–5.
Article
CAS
Google Scholar
Yang F, Du M, Tian X, Eneji AE, Duan L, Li Z. Plant growth regulation enhanced potassium uptake and use efficiency in cotton. Field Crop Res. 2014;163:109–18.
Article
Google Scholar
Wang L, Mu C, Du M, Chen Y, Tian X, Zhang M, et al. The effect of mepiquat chloride on elongation of cotton (Gossypium hirsutum L.) internode is associated with low concentration of gibberellic acid. Plant Sci. 2014;225:15–23.
Article
CAS
PubMed
Google Scholar
Gu S, Evers JB, Zhang L, Mao L, Zhang S, Zhao X, et al. Modelling the structural response of cotton plants to mepiquat chloride and population density. Ann Bot. 2014;114:877–87.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu J, Wu Q, Pagès L, Yuan Y, Zhang X, Du M, et al. RhizoChamber-monitor: a robotic platform and software enabling characterization of root growth. Plant Methods. 2018;14. https://doi.org/10.1186/s13007-018-0316-5.
Tsukagoshi H, Busch W, Benfey PN. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell. 2010;143:606–16.
Article
PubMed
CAS
Google Scholar
Berova M, Zlatev Z. Physiological response and yield of paclobutrazol treated tomato plants (Lycopersicon esculentum Mill). Plant Growth Regul. 2000;30:117–23.
Article
CAS
Google Scholar
Saraiva Grossi JA, de Moraes PJ, de Araújo TS, Barbosa JG, Finger FL, Cecon PR. Effects of paclobutrazol on growth and fruiting characteristics of ‘pitanga’ ornamental pepper. Acta Hortic. 2005;683:333–6.
Article
Google Scholar
Watson G. Effect of transplanting and Paclobutrazol on root growth of ‘green column’ black maple and ‘summit’ green ash. J Environ Hortic. 2004;22:209–12.
Google Scholar
Busov V, Meilan R, Pearce DW, Rood SB, Ma C, Tschaplinski TJ, et al. Transgenic modification of gai or rgl1 causes dwarfing and alters gibberellins, root growth, and metabolite profiles in Populus. Planta. 2006;224:288–99.
Article
PubMed
CAS
Google Scholar
Ariizumi T, Hauvermale AL, Nelson SK, Hanada A, Yamaguchi S, Steber CM. Lifting DELLA repression of Arabidopsis seed germination by Nonproteolytic gibberellin signaling. Plant Physiol. 2013;162:2125–39.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, et al. The main auxin biosynthesis pathway in Arabidopsis. PNAS. 2011;108:18512–7.
Article
PubMed
PubMed Central
Google Scholar
Rogg LE, Lasswell J, Bartel B. A gain-of-function mutation in IAA28 suppresses lateral root development. Plant Cell. 2001;13:465–80.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tatematsu K, Kumagai S, Muto H, Sato A, Watahiki MK, Harper RM, et al. MASSUGU2 encodes aux/IAA19, an Auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell. 2004;16:379–93.
Article
PubMed
PubMed Central
CAS
Google Scholar
Uehara T, Okushima Y, Mimura T, Tasaka M, Fukaki H. Domain II mutations in CRANE/IAA18 suppress lateral root formation and affect shoot development in Arabidopsis thaliana. Plant Cell Physiol. 2008;49:1025–38.
Article
PubMed
CAS
Google Scholar
De Rybel B, Vassileva V, Parizot B, Demeulenaere M, Grunewald W, Audenaert D, et al. A novel aux/IAA28 signaling Cascade activates GATA23-dependent specification of lateral root founder cell identity. Curr Biol. 2010;20:1697–706.
Article
PubMed
CAS
Google Scholar
Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K, Umemura I, et al. Crown rootless1, which is essential for crown root formation in Rice, is a target of an AUXIN RESPONSE FACTOR in Auxin signaling. Plant Cell. 2005;17:1387–96.
Article
PubMed
PubMed Central
CAS
Google Scholar
Taramino G, Sauer M, JLS J, Multani D, Niu X, Sakai H, et al. The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation. Plant J. 2007;50:649.
Article
PubMed
CAS
Google Scholar
Péret B, De Rybel B, Casimiro I, Benková E, Swarup R, Laplaze L, et al. Arabidopsis lateral root development: an emerging story. Trends Plant Sci. 2009;14:399–408.
Article
PubMed
CAS
Google Scholar
Lee HW, Kim NY, Lee DJ, Kim J. LBD18/ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis. Plant Physiol. 2009;151:1377–89.
Article
PubMed
PubMed Central
CAS
Google Scholar
Feng Z, Zhu J, Du X, Cui X. Effects of three auxin-inducible LBD members on lateral root formation in Arabidopsis thaliana. Planta. 2012;236:1227–37.
Article
PubMed
CAS
Google Scholar
Magyar Z, Veylder LD, Atanassova A, Bakó L, Inzé D, Bögre L. The role of the Arabidopsis E2FB transcription factor in regulating Auxin-dependent cell division. Plant Cell. 2005;17:2527–41.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sozzani R, Maggio C, Varotto S, Canova S, Bergounioux C, Albani D, et al. Interplay between Arabidopsis activating factors E2Fb and E2Fa in cell cycle progression and development. Plant Physiol. 2006;140:1355–66.
Article
PubMed
PubMed Central
CAS
Google Scholar
Polyn S, Willems A, De Veylder L. Cell cycle entry, maintenance, and exit during plant development. Curr Opin Plant Biol. 2015;23:1–7.
Article
PubMed
CAS
Google Scholar
Himanen K, Vuylsteke M, Vanneste S, Vercruysse S, Boucheron E, Alard P, et al. Transcript profiling of early lateral root initiation. Proc Natl Acad Sci U S A. 2004;101:5146–51.
Article
PubMed
PubMed Central
CAS
Google Scholar
Riou-Khamlichi C, Huntley R, Jacqmard A, Murray JAH. Cytokinin activation of Arabidopsis cell division through a D-type Cyclin. Science. 1999;283:1541–4.
Article
PubMed
CAS
Google Scholar
Francis D, Sorrell DA. The interface between the cell cycle and plant growth regulators: a mini review. Plant Growth Regul. 2001;33:1–12.
Article
CAS
Google Scholar
Perrot-Rechenmann C. Cellular Responses to Auxin: Division versus Expansion. Cold Spring Harb Perspect Biol. 2010;2:a001446.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hopwood B, Dalton S. Cdc45p assembles into a complex with Cdc46p/Mcm5p, is required for minichromosome maintenance, and is essential for chromosomal DNA replication. Proc Natl Acad Sci U S A. 1996;93:12309–14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zou L, Mitchell J, Stillman B. CDC45, a novel yeast gene that functions with the origin recognition complex and mcm proteins in initiation of DNA replication. Mol Cell Biol. 1997;17:553–63.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lu KP, Liou Y-C, Zhou XZ. Pinning down proline-directed phosphorylation signaling. Trends Cell Biol. 2002;12:164–72.
Article
PubMed
CAS
Google Scholar
Yazdi PT, Wang Y, Zhao S, Patel N, Lee EY-HP, Qin J. SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev. 2002;16:571–82.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5:621–8.
Article
PubMed
CAS
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
Article
PubMed
PubMed Central
CAS
Google Scholar
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11:R14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36(suppl_1):D480–4.
CAS
PubMed
Google Scholar
Mao X, Cai T, Olyarchuk JG, Wei L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics. 2005;21:3787–93.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar
Yang J, Zhang J, Wang Z, Zhu Q, Wang W. Hormonal changes in the grains of Rice subjected to water stress during grain filling. Plant Physiol. 2001;127:315–23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao J, Li G, Yi G-X, Wang B-M, Deng A-X, Nan T-G, et al. Comparison between conventional indirect competitive enzyme-linked immunosorbent assay (icELISA) and simplified icELISA for small molecules. Anal Chim Acta. 2006;571:79–85.
Article
PubMed
CAS
Google Scholar
Weiler EW, Jourdan PS, Conrad W. Levels of indole-3-acetic acid in intact and decapitated coleoptiles as determined by a specific and highly sensitive solid-phase enzyme immunoassay. Planta. 1981;153:561–71.
Article
PubMed
CAS
Google Scholar