Huang GZ, Deng HQ, Li Z, Li G. Water lily. Beijing: China Forestry Press; 2009.
Google Scholar
Sun CQ, Ma ZH, . Sun GS, Dai ZL, Teng NJ, Pan YP. Cellular mechanisms of reproductive barriers in some crosses of water lily (Nymphaea spp.) cultivars. Hortic Sci. 2015; 50:30–35.
Google Scholar
Sun CQ, Ma ZH, Zhang ZC, Sun GS, Dai ZL. Factors influencing cross barriers in interspecific hybridizations of water lily. J Am Soc Hortic Sci. 2018;143(2):1–6.
Google Scholar
Pairat S, Vipa H. Intersubgeneric cross in Nymphaea spp. L. To develop a blue hardy waterlily. Sci Hortic. 2010;124:475–81.
Article
Google Scholar
Sun CQ, Chen FD, Teng NJ, Liu ZL, Fang WM, Hou XL. Factors affecting seed set in the crosses between Dendranthema grandiflorum (Ramat) Kitamura and its wild species. Euphytica. 2010;171:181–92.
Article
Google Scholar
Teng NJ, Wang YL, Sun CQ, Fang WM, Chen FD. Factors influencing fecundity in experimental crosses of water lotus (Nelumbo nucifera Gaertn.) cultivars. BMC Plant Biol. 2012;12:82.
Article
PubMed
PubMed Central
Google Scholar
De Graaf BHJ, Derksen JWM, Mariani C. Pollen and pistil in the progamic phase. Sex Plant Reprod. 2001;14:41–55.
Article
Google Scholar
Ram SG, Ramakrishnan SH, Thiruvengadam V, Bapu JRK. Prefertilization barriers to interspecific hybridization involving Gossypium hirsutum and four diploid wild species. Plant Breed. 2008;127:295–300.
Article
Google Scholar
Ram SG, Sundaravelpandian K, Kumar M, Vinod KK, Bapu JRK, Raveendran TS. Pollen-pistil interaction in the inter-specific crosses of Sesamum sp. Euphytica. 2006;152:379–85.
Article
Google Scholar
Mazzucato A, Olimpieri I, Ciampolini F, Cresti M, Soressi GP. A defective pollen-pistil interaction contributes to hamper seed set in the parthenocarpic fruit tomato mutant. Sex Plant Reprod. 2003;16:157–64.
Article
Google Scholar
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun QQ, Zhang N, Wang JF, Cao YY, Li XS, Zhang HJ, Zhang L, Tan DX, Guo YD. A label-free differential proteomics analysis reveals the effect of melatonin on promoting fruit ripening and anthocyanin accumulation upon postharvest in tomato. J Pineal Res. 2016;61(2):138–53.
Article
CAS
PubMed
Google Scholar
Ma DY, Huang X, Hou JF, Ma Y, Han QX, Hou GG, Wang CY, Guo TC. Quantitative analysis of the grain amyloplast proteome reveals differences in metabolism between two wheat cultivars at two stages of grain development. BMC Genomics. 2018;19:768.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raherison E, Rigault P, Caron S, Poulin PL, Boyle B, Verta JP, Giguère I, Bomal C, Bohlmann J, MacKay J. Transcriptome profiling in conifers and the PiceaGenExpress database show patterns of diversification within gene families and interspecific conservation in vascular gene expression. BMC Genomics. 2012;13:434.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiu ZB, Wan LC, Chen T, Wan YL, He XQ, Lu SF, Wang YW, Liu JX. The regulation of cambial activity in Chinese fir (Cunninghamia lanceolata) nvolves extensive transcriptome remodeling. New Phytol. 2013;199:708–19.
Article
CAS
PubMed
Google Scholar
Sheoran IS, Pedersen EJ, Ross AR, Sawhney VK. Dynamics of protein expression during pollen germination in canola (Brassica napus). Planta. 2009;230(4):779–93.
Article
CAS
PubMed
Google Scholar
Samuel MA, Tang W, Jamshed M, Northey J, Patel D, Siu KW, Muench DG, Wang ZY, Goring DR. Proteomic analysis of Brassica stigmatic proteins following the self-incompatibility reaction reveals a role for microtubule dynamics during pollen responses. Mol Cell Proteomics. 2011;10(12):111–3.
Article
CAS
Google Scholar
Hu L, Liang W, Yin C, Cui X, Zong J, Wang X, Hu J, Zhang D. Rice MADS3 regulates ROS homeostasis during late anther development. Plant Cell. 2011;23:515–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo D, Xu H, Liu Z, Guo J, Li H, Chen L, Fang C, Zhang Q, Bai M, Yao N. A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat Genet. 2013;45:573–7.
Article
CAS
PubMed
Google Scholar
Xie HT, Wan ZY, Li S, Zhang Y. Spatiotemporal production of reactive oxygen species by NADPH oxidase is critical for tapetal programmed cell death and pollen development in Arabidopsis. Plant Cell. 2014;26:2007–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Speranza A, Crinelli R, Scoccianti V, Geitmann A. Reactive oxygen species are involved in pollen tube initiation in kiwifruit. Plant Biol. 2012;14:64–76.
CAS
PubMed
Google Scholar
Potocky M, Jones MA, Bezvoda R, Smirnoff N, Zarsky V. Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol. 2007;174:742–51.
Article
CAS
PubMed
Google Scholar
Kaya H, Nakajima R, Iwano M, Kanaoka MM, Kimura S, Takeda S, Kawarazaki T, Senzaki E, Hamamura Y, Higashiyama T. Ca2+−activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell. 2014;26:1069–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lassig R, Gutermuth T, Bey TD, Konrad KR, Romeis T. Pollen tube NAD (P) H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. Plant J. 2014;78:94–106.
Article
CAS
PubMed
Google Scholar
Duan Q, Kita D, Johnson EA, Aggarwal M, Gates L, Wu HM, Cheung AY. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat Commun. 2014;5:3129.
Article
PubMed
CAS
Google Scholar
Wilkins KA, Bancroft J, Bosch M, Ings J, Smirnoff N, Franklin-Tong VE. Reactive oxygen species and nitric oxide mediate actin reorganization and programmed cell death in the self-incompatibility response of papaver. Plant Physiol. 2011;156:404–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mc Innis SM, Emery DC, Porter R, Desikan R, Hancock JT, Hiscock SJ. The role of stigma peroxidases in flowering plants: insights from further characterization of a stigma-specific peroxidase (SSP) from Senecio squalidus (Asteraceae). J Exp Bot. 2006;57(8):1835–46.
Article
CAS
Google Scholar
Hiscock SJ, Bright J, Mcinnis SM, Desikan R, Hancock JT. Signaling on the stigma: potential new roles for ROS and NO in plant cell signaling. Plant Signal Behav. 2007;2(1):23–4.
Article
PubMed
PubMed Central
Google Scholar
Bright J, Hiscock SJ, James PE, Hancock JT. Pollen generates nitric oxide and nitrite: a possible link to pollen-induced allergic responses. Plant Physiol Biochem. 2009;47(1):49–55.
Article
CAS
PubMed
Google Scholar
Zafra A, Rodríguezgarcía MI, Alché JD. Cellular localization of ROS and NO in olive reproductive tissues during flower development. BMC Plant Biol. 2010;10(1):36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Popescu SC, Popescu GV, Bachan S, Zhang Z, Seay M, Gerstein M, Snyder M, Dinesh-Kumar S. Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci. 2007;104:4730–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharma B, Bhatla SC. Accumulation and scavenging of reactive oxygen species and nitric oxide correlate with stigma maturation and pollen-stigma interaction in sunflower. Acta Physiol Plant. 2013;35(9):2777–87.
Article
CAS
Google Scholar
Tian Y, Fan M, Qin Z, Lv H, Wang M, Zhang Z, Zhou W, Zhao N, Li X, Han C, Ding Z, Wang W, Wang ZY. Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor. Nat Commun. 2018;9:1063.
Article
PubMed
PubMed Central
CAS
Google Scholar
Winkel-shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001;126(2):485–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai CJ, Harding SA, Tschaplinski TJ, Lindroth RL, Yuan Y. Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus. New Phytol. 2006;172(1):47–62.
Article
CAS
PubMed
Google Scholar
Ylstra B, Touraev A, Moreno RM, Stöger E, van Tunen AJ, Vicente O, Mol JN, Heberle-Bors E. Flavonols stimulate development, germination, and tube growth of tobacco pollen. Plant Physiol. 1992;100:902–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mo Y, Nagel C, Taylor LP. Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci. 1992;89:7213–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li M, Xu W, Yang W, Kong Z, Xue Y. Genome-wide gene expression profiling reveals conserved and novel molecular functions of the stigma in rice. Plant Physiol. 2007;144:1797–812.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheung AY, Wu HM, Di Stilio V, Glaven R, Chen C, Wong E, Ogdahl J, Estavillo A. Pollen-pistil interantiongs in Nicotiana tabacum. Ann Bot. 2000;85(S1):29–37.
Article
CAS
Google Scholar
Shen B, Li C, Tarczynski MC. High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-L-methionnine synthetase 3 gene. Plant J. 2002;29(3):371–80.
Article
CAS
PubMed
Google Scholar
Martinez-López N, Varela-Rey M, Ariz U, Embade N, Vazquez-Chantada M, Fernandez-Ramos D, Gomez-Santos L, Lu SC, Mato JM, Martinez-Chantar ML. S-adenosylmethionine and proliferation: new pathways, new targets. Biochem Soc Trans. 2008;36(5):848–52.
Article
PubMed
CAS
Google Scholar
Roje S. S-Adenosyl-L-methionine: beyond the universal methyl group donor. Phytochemistry. 2006;67(15):1686–98.
Article
CAS
PubMed
Google Scholar
Wolukau JN, Zhang SL, Xu GH, Chen D. The effect of temperature, polyamines and polyamine synthesis inhibitor on invitro pollen germination and pollen tube growth of Prunus mume. Sci Hortic. 2004;99(3–4):289–99.
Article
CAS
Google Scholar
Martinis DD, Cotti C, Hekker SL. Ethylene response to pollen tube growth in Nicotiana tabacum flowers. Planta. 2002;214(5):806–12.
Article
PubMed
CAS
Google Scholar
Tian GW, Chen MH, Zaltsman A, Citovsky V. Pollen-specific pectin methylesterase involved in pollen tube growth. Dev Biol. 2006;294:83–91.
Article
CAS
PubMed
Google Scholar
Kim J, Shiu SH, Thoma S, Li WH, Patterson SE. Patterns of expansion and expression divergence in the plant polygalacturonase gene family. Genome Biol. 2006;9:87.
Article
CAS
Google Scholar
Suen DF, Huang AH. Maize pollen coat xylanase facilitates pollen tube penetration into silk during sexual reproduction. J Biol Chem. 2007;282:625–36.
Article
CAS
PubMed
Google Scholar
Swanson R, Clark T, Preuss D. Expression profiling of Arabidopsis stigma tissue identifies stigma-specific genes. Sex Plant Reprod. 2005;18:163–71.
Article
CAS
Google Scholar
Tung CW, Dwyer KG, Nasrallah ME, Nasrallah JB. Genome-wide identification of genes expressed in Arabidopsis pistils specifically along the path of pollen tube growth. Plant Physiol. 2005;138:977–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quiapim AC, Brito MS, Bernardes LA, Dasilva I, Malavazi I, De Paoli HC, Molfetta-Machado JB, Giuliatti S, Goldman GH, Goldman MH. Analysis of the Nicotiana tabacum stigma/style transcriptome reveals gene expression differences between wet and dry stigma species. Plant Physiol. 2009;149:1211–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roach MJ, Mokshina NY, Badhan A, Snegireva AV, Hobson N, Deyholos MK, Gorshkova TA. Development of cellulosic secondary walls in flax fibers requires beta-galactosidase. Plant Physiol. 2011;156:1351–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campbell P, Braam J. Xyloglucan endotransglycosylases: diversity of genes, enzymes and potential wall-modifying functions. Trends Plant Sci. 1999;4(9):361–6.
Article
CAS
PubMed
Google Scholar
Huckelhoven R. Cell wall-associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol. 2007;45:101–27.
Article
PubMed
CAS
Google Scholar
Bernards MA. Demystifying suberin. Can J Bot. 2002;80:227–40.
Article
CAS
Google Scholar
Dixon DP, Skipsey M, Edwards R. Roles for glutathione transferases in plant secondary metabolism. Phytochemistry. 2010;71:338–50.
Article
CAS
PubMed
Google Scholar
Liu HH, Wang LW, Liu X, Ma X, Ning LH, Zhang H, Cui DZ, Jiang C, Chen HB. Proteomic analyses of the early pollen-silk ineraction in maize. Sci Agric Sin. 2010;43(24):5000–8.
CAS
Google Scholar
Schuler MA, Werck-Reichhart D. Functional genomics of P450s. Annu Rev Plant Biol. 2003;54:629–67.
Article
CAS
PubMed
Google Scholar
Group M. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci. 2002;7(7):301–8.
Article
Google Scholar
Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J. TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics. 2003;19:651–2.
Article
CAS
PubMed
Google Scholar
Conesa A, GÖtz S, García-Gómza JM, Terol J, Talón M, Robles M. Blast2go: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–6.
Article
CAS
PubMed
Google Scholar
Wisniewski JR, Zougman A, Nagraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359–62.
Article
CAS
PubMed
Google Scholar
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–72.
Article
CAS
PubMed
Google Scholar
Hubner NC, Mann M. Extracting gene function from protein-protein nteractions using quantitative BAC InteracCtomics (QUBIC). Methods. 2011;53:453–9.
Article
CAS
PubMed
Google Scholar
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014;13(9):2513–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Futcher B, Latter GI, Monardo P, Mclaughlin CS, Garrels JI. A sampling of the yeast proteome. Mol Cell Biol. 1999;19:7357–68.
Article
CAS
PubMed
PubMed Central
Google Scholar