Simpson GG, Dean C. Flowering - Arabidopsis, the rosetta stone of flowering time? Science. 2002;296(5566):285–9.
Article
CAS
PubMed
Google Scholar
Michaels SD. Flowering time regulation produces much fruit. Curr Opin Plant Biol. 2009;12(1):75–80.
Article
CAS
PubMed
Google Scholar
Srikanth A, Schmid M. Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci. 2011;68(12):2013–37.
Article
CAS
PubMed
Google Scholar
Kazan K, Lyons R. The link between flowering time and stress tolerance. J Exp Bot. 2016;67(1):47–60.
Article
CAS
PubMed
Google Scholar
Michaels SD, Amasino RM. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell. 1999;11(5):949–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim DH, Doyle MR, Sung S, Amasino RM. Vernalization: winter and the timing of flowering in plants. Annu Rev Cell Dev Bi. 2009;25:277–99.
Article
CAS
Google Scholar
Simpson GG. The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Curr Opin Plant Biol. 2004;7(5):570–4.
Article
CAS
PubMed
Google Scholar
Cheng JZ, Zhou YP, Lv TX, Xie CP, Tian CE. Research progress on the autonomous flowering time pathway in Arabidopsis. Physiol Mol Biol Plants. 2017;23(3):477–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Helliwell CA, Wood CC, Robertson M, James Peacock W, Dennis ES. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J. 2006;46(2):183–92.
Article
CAS
PubMed
Google Scholar
Searle I, He Y, Turck F, Vincent C, Fornara F, Krober S, Amasino RA, Coupland G. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev. 2006;20(7):898–912.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hepworth J, Dean C. Flowering locus C's lessons: conserved chromatin switches underpinning developmental timing and adaptation. Plant Physiol. 2015;168(4):1237–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amasino R. Seasonal and developmental timing of flowering. Plant J. 2010;61(6):1001–13.
Article
CAS
PubMed
Google Scholar
He Y. Chromatin regulation of flowering. Trends Plant Sci. 2012;17(9):556–62.
Article
CAS
PubMed
Google Scholar
Whittaker C, Dean C. The FLC Locus: A Platform for Discoveries in Epigenetics and Adaptation. Annu Rev Cell Dev Biol. 2017;33:555–75.
Article
CAS
PubMed
Google Scholar
Nicolas M, Cubas P. TCP factors: new kids on the signaling block. Curr Opin Plant Biol. 2016;33:33–41.
Article
CAS
PubMed
Google Scholar
Martin-Trillo M, Cubas P. TCP genes: a family snapshot ten years later. Trends Plant Sci. 2010;15(1):31–9.
Article
CAS
PubMed
Google Scholar
Lucero LE, Manavella PA, Gras DE, Ariel FD, Gonzalez DH. Class I and class II TCP transcription factors modulate SOC1-dependent flowering at multiple levels. Mol Plant. 2017;10(12):1571–4.
Article
CAS
PubMed
Google Scholar
Liu J, Cheng X, Liu P, Li D, Chen T, Gu X, Sun J. MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis. PLoS Genet. 2017;13(5):e1006833.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kubota A, Ito S, Shim JS, Johnson RS, Song YH, Breton G, Goralogia GS, Kwon MS, Laboy Cintron D, Koyama T, et al. TCP4-dependent induction of CONSTANS transcription requires GIGANTEA in photoperiodic flowering in Arabidopsis. PLoS Genet. 2017;13(6):e1006856.
Article
PubMed
PubMed Central
CAS
Google Scholar
Niwa M, Daimon Y, Kurotani KI, Higo A, Pruneda-Paz JL, Breton G, Mitsuda N, Kay SA, Ohme-Takagi M, Endo M, et al. BRANCHED1 interacts with FLOWERING LOCUS T to repress the floral transition of the axillary meristems in Arabidopsis. Plant Cell. 2013;25(4):1228–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ho WWH, Weigel D. Structural features determining flower-promoting activity of Arabidopsis FLOWERING LOCUS T. Plant Cell. 2014;26(2):552–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu JF. Tsai HL, Joanito I, Wu YC, Chang CW, Li YH, Wang Y, Hong JC, Chu JW, Hsu CP et al: LWD-TCP complex activates the morning gene CCA1 in Arabidopsis. Nat Commun. 2016;7:13181.
Pruneda-Paz JL, Breton G, Para A, Kay SA. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian Clock. Science. 2009;323(5920):1481–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Gao J, Zhu Z, Dong X, Wang X, Ren G, Zhou X, Kuai B. TCP transcription factors are critical for the coordinated regulation of isochorismate synthase 1 expression in Arabidopsis thaliana. Plant J. 2015;82(1):151–62.
Article
CAS
PubMed
Google Scholar
Spears BJ, Howton TC, Gao F, Garner CM, Mukhtar MS, Gassmann W. Direct regulation of the EFR-dependent immune response by Arabidopsis TCP transcription factors. Mol Plant-Microbe Interact. 2019;32(2):540–9.
Article
CAS
PubMed
Google Scholar
Kim SH, Son GH, Bhattacharjee S, Kim HJ, Nam JC, Nguyen PD, Hong JC, Gassmann W. The Arabidopsis immune adaptor SRFR1 interacts with TCP transcription factors that redundantly contribute to effector-triggered immunity. Plant J. 2014;78(6):978–89.
Article
CAS
PubMed
Google Scholar
Li M, Chen H, Chen J, Chang M, Palmer IA, Gassmann W, Liu F, Fu ZQ. TCP transcription factors interact with NPR1 and contribute redundantly to systemic acquired resistance. Front Plant Sci. 2018;9:1153.
Article
PubMed
PubMed Central
Google Scholar
Zhang N, Wang Z, Bao Z, Yang L, Wu D, Shu X, Hua J. MOS1 functions closely with TCP transcription factors to modulate immunity and cell cycle in Arabidopsis. Plant J. 2018;93(1):66–78.
Article
CAS
PubMed
Google Scholar
Zhang G, Zhao H, Zhang C, Li X, Lyu Y, Qi D, Cui Y, Hu L, Wang Z, Liang Z, et al. TCP7 functions redundantly with several class I TCPs and regulates endoreplication in Arabidopsis. J Integr Plant Biol. 2019;61(11):1151–70.
Article
CAS
PubMed
Google Scholar
Daviere JM, Wild M, Regnault T, Baumberger N, Eisler H, Genschik P, Achard P. Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height. Curr Biol. 2014;24(16):1923–8.
Article
CAS
PubMed
Google Scholar
van Es SW, van der Auweraert EB, Silveira SR, Angenent GC, van Dijk ADJ, Immink RGH. Comprehensive phenotyping reveals interactions and functions of Arabidopsis thaliana TCP genes in yield determination. Plant J. 2019;99(2):316–28.
PubMed
PubMed Central
Google Scholar
Danisman S, van der Wal F, Dhondt S, Waites R, de Folter S, Bimbo A, van Dijk AD, Muino JM, Cutri L, Dornelas MC, et al. Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol. 2012;159(4):1511–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aguilar-Martinez JA, Sinha N. Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development. Front Plant Sci. 2013;4:406.
Article
PubMed
PubMed Central
Google Scholar
Wu Z, Ietswaart R, Liu F, Yang H, Howard M, Dean C. Quantitative regulation of FLC via coordinated transcriptional initiation and elongation. Proc Natl Acad Sci U S A. 2016;113(1):218–23.
Article
CAS
PubMed
Google Scholar
Danisman S, van Dijk AD, Bimbo A, van der Wal F, Hennig L, de Folter S, Angenent GC, Immink RG. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. J Exp Bot. 2013;64(18):5673–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balsemao-Pires E, Andrade LR, Sachetto-Martins G. Functional study of TCP23 in Arabidopsis thaliana during plant development. Plant Physiol Biochem. 2013;67C:120–5.
Article
CAS
Google Scholar
Li ZY, Li B, Dong AW. The Arabidopsis transcription factor AtTCP15 regulates endoreduplication by modulating expression of key cell-cycle genes. Mol Plant. 2012;5(1):270–80.
Article
CAS
PubMed
Google Scholar
Uberti-Manassero NG, Lucero LE, Viola IL, Vegetti AC, Gonzalez DH. The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins. J Exp Bot. 2012;63(2):809–23.
Article
CAS
PubMed
Google Scholar
Kieffer M, Master V, Waites R, Davies B. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. Plant J. 2011;68(1):147–58.
Article
CAS
PubMed Central
PubMed
Google Scholar
Baurle I, Dean C. Differential interactions of the autonomous pathway RRM proteins and chromatin regulators in the silencing of Arabidopsis targets. s. 2008;3(7):e2733.
Google Scholar
Baurle I, Smith L, Baulcombe DC, Dean C. Widespread role for the flowering-time regulators FCA and FPA in RNA-mediated chromatin silencing. Science. 2007;318(5847):109–12.
Article
PubMed
CAS
Google Scholar
Tian YK, Zheng H, Zhang F, Wang SL, Ji XR, Xu C, He YH, Ding Y. PRC2 recruitment and H3K27me3 deposition at FLC require FCA binding of COOLAIR. Sci Adv. 2019;5(4):eaau7246.
Article
PubMed
PubMed Central
Google Scholar
Bao Z, Zhang N, Hua J. Endopolyploidization and flowering time are antagonistically regulated by checkpoint component MAD1 and immunity modulator MOS1. Nat Commun. 2014;5:5628.
Article
CAS
PubMed
Google Scholar
Castillejo C, Pelaz S. The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering. Curr Biol. 2008;18(17):1338–43.
Article
CAS
PubMed
Google Scholar
Aguilar-Jaramillo AE, Marin-Gonzalez E, Matias-Hernandez L, Osnato M, Pelaz S, Suarez-Lopez P. TEMPRANILLO is a direct repressor of the microRNA miR172. Plant J. 2019;100(3):522–35.
Article
CAS
PubMed
Google Scholar
Osnato M, Castillejo C, Matias-Hernandez L, Pelaz S. TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis. Nat Commun. 2012;3:808.
Article
PubMed
CAS
Google Scholar
Zhang T, Qu Y, Wang H, Wang J, Song A, Hu Y, Chen S, Jiang J, Chen F. The heterologous expression of a chrysanthemum TCP-P transcription factor CmTCP14 suppresses organ size and delays senescence in Arabidopsis thaliana. Plant Physiol Biochem. 2017;115:239–48.
Article
CAS
PubMed
Google Scholar
Yu J, Wang XY, Wei QA, Kuai BK. Identification of regulatory cis-elements upstream of AtNPR1 that are responsive to Probenazole treatment in transgenic tobacco plants. J Plant Biol. 2010;53(4):282–90.
Article
CAS
Google Scholar