Bewley JD. Seed germination and dormancy. Plant Cell. 1997;9(7):1055.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang S, Gruber S, Stockmann F, Claupein W. Dynamics of dormancy during seed development of oilseed rape (Brassica napus L.). Seed Sci Res. 2016;26(3):245–53.
Article
CAS
Google Scholar
KeÇpczyński J, KeÇpczyńska E. Ethylene in seed dormancy and germination. Physiol Plantarum. 1997;101(4):720–6.
Article
Google Scholar
Rodríguez-Gacio MD, Matilla-Vázquez MA, Matilla AJ. Seed dormancy and ABA signaling: the breakthrough goes on. Plant Signal Behav. 2009;4(11):1035–48.
Article
Google Scholar
Dixon KW, Merritt DJ, Flematti GR, Ghisalberti EL. Karrikinolide–a phytoreactive compound derived from smoke with applications in horticulture, ecological restoration and agriculture. Acta Hortic. 2009;813:155–70.
Article
CAS
Google Scholar
Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD. A compound from smoke that promotes seed germination. Sci. 2004;305(5686):977.
Article
CAS
Google Scholar
Nelson DC, Riseborough JA, Flematti GR, Stevens J, Ghisalberti EL, Dixon KW, Smith SM. Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Plant Physiol. 2009;149(2):863–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krasuska U, Ciacka K, Andryka-Dudek P, Bogatek R, Gniazdowska A. “Nitrosative Door” in Seed Dormancy Alleviation and Germination. In: Reactive Oxygen and Nitrogen Species Signaling and Communication in plants. Cham: Springer; 2015. p. 215–37.
Google Scholar
Arc E, Galland M, Godin B, Cueff G, Rajjou L. Nitric oxide implication in the control of seed dormancy and germination. Frontiers Plant Sci. 2013;4:346.
Google Scholar
Bethke PC, Gubler F, Jacobsen JV, Jones RL. Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide. Planta. 2004;219(5):847–55.
Article
CAS
PubMed
Google Scholar
Gniazdowska A, Krasuska U, Bogatek R. Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway. Planta. 2010;232(6):1397–407.
Article
CAS
PubMed
Google Scholar
Liu X, Deng Z, Cheng H, He X, Song S. Nitrite, sodium nitroprusside, potassium ferricyanide and hydrogen peroxide release dormancy of Amaranthus retroflexus seeds in a nitric oxide-dependent manner. Plant Growth Reg. 2011;64(2):155–61.
Article
CAS
Google Scholar
Kępczyński J, Sznigir P. Participation of GA 3, ethylene, NO and HCN in germination of Amaranthus retroflexus L. seeds with various dormancy levels. Acta Physiol Plantarum. 2014;36(6):1463–72.
Article
CAS
Google Scholar
Gniazdowska A, Dobrzyńska U, Babańczyk T, Bogatek R. Breaking the apple embryo dormancy by nitric oxide involves the stimulation of ethylene production. Planta. 2007;225(4):1051–7.
Article
CAS
PubMed
Google Scholar
Hall BP, Shakeel SN, Schaller GE. Ethylene receptors: ethylene perception and signal transduction. J Plant Growth Reg. 2007;26(2):118–30.
Article
CAS
Google Scholar
Pierik R, Sasidharan R, Voesenek LA. Growth control by ethylene: adjusting phenotypes to the environment. JPlant Growth Reg. 2007;26(2):188–200.
Article
CAS
Google Scholar
Corbineau F, Xia Q, Bailly C, El-Maarouf-Bouteau H. Ethylene, a key factor in the regulation of seed dormancy. Frontiers Plant Sci. 2014;5:539.
Article
Google Scholar
Kucera B, Cohn MA, Leubner-Metzger G. Plant hormone interactions during seed dormancy release and germination. Seed Sci Res. 2005;15(4):281–307.
Article
CAS
Google Scholar
Yang SF, Hoffman NE. Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol. 1984;35(1):155–89.
Article
CAS
Google Scholar
Matilla AJ, Matilla-Vázquez MA. Involvement of ethylene in seed physiology. Plant Sci. 2008;175(1–2):87–97.
Article
CAS
Google Scholar
Booker MA, DeLong A. Producing the ethylene signal: regulation and diversification of ethylene biosynthetic enzymes. Plant Physiol. 2015;169(1):42–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruduś I, Sasiak M, Kępczyński J. Regulation of ethylene biosynthesis at the level of 1-aminocyclopropane-1-carboxylate oxidase (ACO) gene. Acta Physiol Plantarum. 2013;35(2):295–307.
Article
CAS
Google Scholar
Iglesias-Fernández R, Matilla A. After-ripening alters the gene expression pattern of oxidases involved in the ethylene and gibberellin pathways during early imbibition of Sisymbrium officinale L. seeds. J Exp Bot. 2009;60(6):1645–61.
Article
PubMed
PubMed Central
CAS
Google Scholar
Narsai R, Law SR, Carrie C, Xu L, Whelan J. In-depth temporal transcriptome profiling reveals a crucial developmental switch with roles for RNA processing and organelle metabolism that are essential for germination in Arabidopsis. Plant Physiol. 2011;157(3):1342–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Linkies A, Leubner-Metzger G. Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Rep. 2012;31(2):253–70.
Article
CAS
PubMed
Google Scholar
Calvo AP, Nicolás C, Lorenzo O, Nicolás G, Rodríguez D. Evidence for positive regulation by gibberellins and ethylene of ACC oxidase expression and activity during transition from dormancy to germination in Fagus sylvatica L. seeds. J Plant Growth Reg. 2004;23(1):44–53.
Article
CAS
Google Scholar
Chitnis VR, Gao F, Yao Z, Jordan MC, Park S, Ayele BT. After-ripening induced transcriptional changes of hormonal genes in wheat seeds: the cases of brassinosteroids, ethylene, cytokinin and salicylic acid. PLoS One. 2014;9(1):e87543.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hendricks SB, Taylorson RB. Promotion of seed germination by nitrate, nitrite, hydroxylamine, and ammonium salts. Plant Physiol. 1974;54(3):304–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
El-Maarouf-Bouteau H, Bailly C. Oxidative signaling in seed germination and dormancy. Plant Signal Behav. 2008;3(3):175–82.
Article
PubMed
PubMed Central
Google Scholar
Whitaker C, Beckett RP, Minibayeva FV, Kranner I. Alleviation of dormancy by reactive oxygen species in Bidens pilosa L. seeds. South African J Bot. 2010;76(3):601–5.
Article
CAS
Google Scholar
Bailly C, El-Maarouf-Bouteau H, Corbineau F. From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. Comptes Rendus Biol. 2008;331(10):806–14.
Article
CAS
Google Scholar
Oracz K, Bouteau HE, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C. ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J. 2007;50(3):452–65.
Article
CAS
PubMed
Google Scholar
Diaz-Vivancos P, Barba-Espín G, Hernández JA. Elucidating hormonal/ROS networks during seed germination: insights and perspectives. Plant Cell Rep. 2013;32(10):1491–502.
Article
CAS
PubMed
Google Scholar
Noctor G, Foyer CH. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev of Plant Biol. 1998;49(1):249–79.
Article
CAS
Google Scholar
Cembrowska-Lech D, Kępczyński J. Gibberellin-like effects of KAR 1 on dormancy release of Avena fatua caryopses include participation of non-enzymatic antioxidants and cell cycle activation in embryos. Planta. 2016;243(2):531–48.
Article
CAS
PubMed
Google Scholar
Cadman CS, Toorop PE, Hilhorst HW, Finch-Savage WE. Gene expression profiles of Arabidopsis cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J. 2006;46(5):805–22.
Article
CAS
PubMed
Google Scholar
Finch-Savage WE, Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol. 2006;171(3):501–23.
Article
CAS
PubMed
Google Scholar
Hilhorst HW. Definitions and hypotheses of seed dormancy. Annu Plant Rev Online. 2007;27:50–71. https://doi.org/10.1002/9780470988848.ch3.
Awan S, Footitt S, Finch-Savage WE. Interaction of maternal environment and allelic differences in seed vigour genes determines seed performance in Brassica oleracea. Plant J. 2018;94(6):1098–108.
Article
CAS
PubMed
Google Scholar
Hu J, Sadowski J, Osborn TC, Landry BS, Quiros CF. Linkage group alignment from four independent Brassica oleracea RFLP maps. Genome. 1998;41(2):226–35.
Article
CAS
Google Scholar
Momoh EJ, Zhou WJ, Kristiansson B. Variation in the development of secondary dormancy in oilseed rape genotypes under conditions of stress. Weed Res. 2002;42(6):446–55.
Article
Google Scholar
Gulden RH, Chiwocha S, Abrams S, McGregor I, Kermode A, Shirtliffe S. Response to abscisic acid application and hormone profiles in spring Brassica napus seed in relation to secondary dormancy. Canadian J Bot. 2004;82(11):1618–24.
Article
CAS
Google Scholar
Lan TH, DelMonte TA, Reischmann KP, Hyman J, Kowalski SP, McFerson J, Kresovich S, Paterson AH. An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Res. 2000;10(6):776–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kępczyński J, Van Staden J. Interaction of karrikinolide and ethylene in controlling germination of dormant Avena fatua L. caryopses. Plant Growth Reg. 2012;67(2):185–90.
Article
CAS
Google Scholar
Simontacchi M, Jasid S, Puntarulo S. Nitric oxide generation during early germination of sorghum seeds. Plant Sci. 2004;167(4):839–47.
Article
CAS
Google Scholar
Kranner I, Roach T, Beckett RP, Whitaker C, Minibayeva FV. Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum. J Plant Physiol. 2010;167(10):805–11.
Article
CAS
PubMed
Google Scholar
Oracz K, El-Maarouf-Bouteau H, Kranner I, Bogatek R, Corbineau F, Bailly C. The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiol. 2009;150(1):494–505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shakeel SN, Wang X, Binder BM, Schaller GE. Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AoB Plants. 2013;5:plt010. https://doi.org/10.1093/aobpla/plt010.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ruduś I, Kępczyński J. Reference gene selection for molecular studies of dormancy in wild oat (Avena fatua L.) caryopses by RT-qPCR method. PloS One. 2018;13(2):e0192343.
Article
PubMed
PubMed Central
CAS
Google Scholar
Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot. 2002;53(372):1331–41.
Article
CAS
PubMed
Google Scholar
Fath A, Bethke PC, Jones RL. Enzymes that scavenge reactive oxygen species are down-regulated prior to gibberellic acid-induced programmed cell death in barley aleurone. Plant Physiol. 2001;126(1):156–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cembrowska-Lech D, Koprowski M, Kępczyński J. Germination induction of dormant Avena fatua caryopses by KAR1 and GA3 involving the control of reactive oxygen species (H2O2 and O2−) and enzymatic antioxidants (superoxide dismutase and catalase) both in the embryo and the aleurone layers. J Plant Physiol. 2015;176:169–79.
Article
CAS
PubMed
Google Scholar
Feurtado JA, Kermode AR. A merging of paths: abscisic acid and hormonal cross-talk in the control of seed dormancy maintenance and alleviation. Annu Plant Rev Online. 2018;27:176–223. https://doi.org/10.1002/9781119312994.apr0282.
Sisler EC, Serek M. Compounds interacting with the ethylene receptor in plants. Plant Biol. 2003;5(05):473–80.
Article
Google Scholar
Locke JM, Bryce JH, Morris PC. Contrasting effects of ethylene perception and biosynthesis inhibitors on germination and seedling growth of barley (Hordeum vulgare L.). J Exp Bot. 2000;51(352):1843–9.
Article
CAS
PubMed
Google Scholar
Oracz K, El-Maarouf-Bouteau H, Bogatek R, Corbineau F, Bailly C. Release of sunflower seed dormancy by cyanide: cross-talk with ethylene signalling pathway. J Exp Bot. 2008;59(8):2241–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petruzzelli L, Coraggio I, Leubner-Metzger G. Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclo-propane-1-carboxylic acid oxidase. Planta. 2000;211(1):144–9.
Article
CAS
PubMed
Google Scholar
Schierle J, Rohwer F, Bopp M. Distribution of ethylene synthesis along the etiolated pea shoot and its regulation by ethylene. J Plant Physiol. 1989;134(3):331–7.
Article
CAS
Google Scholar
Gallie DR. Ethylene receptors in plants-why so much complexity? F1000Prime Rep. 2015;7:39. https://doi.org/10.12703/P7-39.
Gallie DR. Regulated ethylene insensitivity through the inducible expression of the Arabidopsis etr1-1 mutant ethylene receptor in tomato. Plant Physiol. 2010;152(4):1928–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dobrzyn’ska U, Zielin’ska K, Gniazdowska A, Bogatek R. Involvement of antioxidant system in HCN and NO- mediated dormancy removal of apple embryo. Polish J Nat Sci. 2008;5(Suppl):164.
Google Scholar
Dębska K, Krasuska U, Budnicka K, Bogatek R, Gniazdowska A. Dormancy removal of apple seeds by cold stratification is associated with fluctuation in H2O2, NO production and protein carbonylation level. J Plant Physiol. 2013;170(5):480–8.
Article
PubMed
CAS
Google Scholar
Nagase R, Katayama M, Mura H, Matsuo N, Tanabe Y. Synthesis of the seed germination stimulant 3-methyl-2H-furo [2, 3-c] pyran-2-ones utilizing direct and regioselective Ti-crossed aldol addition. Tetrahedron Lett. 2008;49(29–30):4509–12.
Article
CAS
Google Scholar
Velikova V, Yordanov I, Edreva A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci. 2000;151(1):59–66.
Article
CAS
Google Scholar
Nguyen HM, Sako K, Matsui A, Suzuki Y, Mostofa MG, Ha CV, Tanaka M, Tran LS, Habu Y, Seki M. Ethanol enhances high-salinity stress tolerance by detoxifying reactive oxygen species in Arabidopsis thaliana and rice. Frontiers Plant Sci. 2017;8:1001.
Article
Google Scholar
Elstner EF, Heupel A. Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem. 1976;70(2):616–20.
Article
CAS
PubMed
Google Scholar
Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Bio Chem. 1972;247(10):3170–5.
CAS
Google Scholar
Aebi H. Catalase in vitro. In: Methods in enzymology, vol. 105. Europe PMC: Academic Press; 1984. p. 121–6. http://dx.doi.org/10.1016/S0076-68.
Google Scholar
Esterbauer H, Grill D. Seasonal variation of glutathione and glutathione reductase in needles of Picea abies. Plant Physiol. 1978;61(1):119–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54.
Article
CAS
PubMed
Google Scholar
Shuai H, Meng Y, Luo X, Chen F, Zhou W, Dai Y, Qi Y, Du J, Yang F, Liu J, Yang W. Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio. Sci Rep. 2017;7(1):12620.
Article
PubMed
PubMed Central
CAS
Google Scholar
Concepcion M, Lizada C, Yang SF. A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid. Anal Biochem. 1979;100(1):140–5.
Article
Google Scholar
Yip WK, Dong JG, Yang SF. Purification and characterization of 1-aminocyclopropane-1-carboxylate synthase from apple fruits. Plant Physiol. 1991;95(1):251–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mathooko FM, Kubo Y, Inaba A, Nakamura R. Partial characterization of 1-aminocyclopropane-1-carboxylate oxidase from excised mesocarp tissue of winter squash fruit. Sci Rep Faculty Agri Okayama Univ. 1993;82(1):49–59.
CAS
Google Scholar