Samson R, Legendre JB, Christen R, Fischer-Le Saux M, Achouak W, et al. Transfer of Pectobacterium chrysanthemi and Brenneria paradisiaca to the genus Dickeya gen. Nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. Int J Syst Evol Microbiol. 2005;55:1415–27.
Article
CAS
PubMed
Google Scholar
Toth IK, Bell KS, Holeva MC, Birch PR. Soft rot erwiniae: from genes to genomes. Mol Plant Pathol. 2003;4:17–30.
Article
CAS
PubMed
Google Scholar
Yan X, Ye W, Li Y, Jiang J, Cao Y, et al. Isolation, identification and pahtogenicity analysis of soft rot pathogen from Oncidium 'Gower Ramsey'. Subtropical Plant Sci. 2017;46:201–8.
Google Scholar
Fu SF, Tsai TM, Chen YR, Liu CP, Haiso LJ, et al. Characterization of the early response of the orchid, Phalaenopsis amabilis, to Erwinia chrysanthemi infection using expression profiling. Physiol Plant. 2012;145:406–25.
Article
CAS
PubMed
Google Scholar
Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, et al. The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J Biol Chem. 2005;280:26241–7.
Article
CAS
PubMed
Google Scholar
Yadav V, Kumar M, Deep DK, Kumar H, Sharma R, et al. A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. J Biol Chem. 2010;285:26532–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peśkan-Berghöfer T, Shahollari B, Giong PH, Hehl S, Markert C, et al. Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant-microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiol Plant. 2004;122:465–77.
Article
CAS
Google Scholar
Shahollari B, Varma A, Oelmüller R. Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in triton X-100 insoluble plasma membrane microdomains. J Plant Physiol. 2005;162:945–58.
Article
CAS
PubMed
Google Scholar
Lee Y-C, Johnson JM, Chien C-T, Yeh K-W. Growth promotion of Chinese cabbage and Arabidopsis by Piriformospora indica is not stimulated by mycelium-synthesized Auxin. MPMI. 2011;20:421–31.
Article
CAS
Google Scholar
Dolatabadi HK, Goltapeh EM, Jaimand K, Rohani N, Varma A. Effects of Piriformospora indica and Sebacina vermifera on growth and yield of essential oil in fennel (Foeniculum vulgare) under greenhouse conditions. J Basic Microbiol. 2011;51:33–9.
Article
CAS
PubMed
Google Scholar
Hua MD, Senthil Kumar R, Shyur LF, Cheng YB, Tian Z, et al. Metabolomic compounds identified in Piriformospora indica-colonized Chinese cabbage roots delineate symbiotic functions of the interaction. Sci Rep. 2017;7:9291.
Article
PubMed
PubMed Central
CAS
Google Scholar
Varma A, Savita V. Sudha, Sahay N, Butehorn B, et al. Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol. 1999;65:2741–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A. 2005;102:13386–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun C, Shao Y, Vahabi K, Lu J, Bhattacharya S, Dong S, Yeh K-W, Sherameti I, Lou B, Baldwin IT, et al. The beneficial fungus Piriformospora indica protects Arabidopsis from Verticillium dahliaeinfection by downregulation plant defense responses. BMC Plant Biol. 2014;14(1):268.
Matsuo M, Johnson JM, Hieno A, Tokizawa M, Nomoto M, et al. High REDOX RESPONSIVE TRANSCRIPTION FACTOR1 levels result in accumulation of reactive oxygen species in Arabidopsis thaliana shoots and roots. Mol Plant. 2015;8:1253–73.
Article
CAS
PubMed
Google Scholar
Johnson JM, Thürich J, Petutschnig EK, Altschmied L, Meichsner D, et al. A poly(a) ribonuclease controls the cellotriose-based interaction between Piriformospora indica and its host Arabidopsis. Plant Physiol. 2018;176:2496–514.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell. 2003;15:809–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou T, Wang Y, Chen JQ, Araki H, Jing Z, et al. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Gen Genomics. 2004;271:402–15.
Article
CAS
Google Scholar
EAvd B, JDG J. The NB-ARC domain:a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol. 1998;8:226–8.
Article
Google Scholar
Pan Q, Wendel J, Fluhr R. Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol. 2000;50:203–13.
Article
CAS
PubMed
Google Scholar
Baulcombe D. RNA silencing in plants. Nature. 2004;431:356–63.
Article
CAS
PubMed
Google Scholar
Hajdarpasic A, Ruggenthaler P. Analysis of miRNA expression under stress in Arabidopsis thaliana. Bosn J Basic Med Sci. 2012;12:169–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Zhang Q, Zhang J, Wu L, Qi Y, et al. Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol. 2010;152:2222–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science. 2006;312:436–9.
Article
CAS
PubMed
Google Scholar
Navarro L, Jay F, Nomura K, He SY, Voinnet O. Suppression of the microRNA pathway by bacterial effector proteins. Science. 2008;321:964–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Deng Y, Wu T, Subramanian S, Yu O. Misexpression of miR482, miR1512, and miR1515 increases soybean nodulation. Plant Physiol. 2010;153:1759–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jue D, Sang X, Liu L, Shu B, Wang Y, et al. Identification of WRKY gene family from Dimocarpus longan and its expression analysis during flower induction and abiotic stress responses. Int J Mol Sci. 2018;19(8):E2169.
Article
PubMed
CAS
Google Scholar
Yang L, Mu X, Liu C, Cai J, Shi K, et al. Overexpression of potato miR482e enhanced plant sensitivity to Verticillium dahliae infection. J Integr Plant Biol. 2015;57:1078–88.
Article
CAS
PubMed
Google Scholar
Devers EA, Branscheid A, May P, Krajinski F. Stars and symbiosis: microRNA- and microRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis. Plant Physiol. 2011;156:1990–2010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye W, Shen C-H, Lin Y, Chen P-J, Xu X, et al. Growth promotion-related miRNAs in oncidium orchid roots colonized by the endophytic fungus Piriformospora indica. PLoS One. 2014;9:e84920.
Article
PubMed
PubMed Central
CAS
Google Scholar
Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, et al. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J. 1999;20:317–32.
Article
CAS
PubMed
Google Scholar
Chini A, Grant JJ, Seki M, Shinozaki K, Loake GJ. Drought tolerance established by enhanced expression of the CC-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. Plant J. 2004;38:810–22.
Article
CAS
PubMed
Google Scholar
Cai J, Liu X, Vanneste K, Proost S, Tsai W-C, et al. The genome sequence of the orchid Phalaenopsis equestris. Nat Genet. 2015;47:65–72.
Article
CAS
PubMed
Google Scholar
Yan L, Wang X, Liu H, Tian Y, Lian J, et al. The genome of Dendrobium officinale illuminates the biology of the important traditional Chinese orchid herb. Mol Plant. 2015;8:922–34.
Article
CAS
PubMed
Google Scholar
Arya P, Kumar G, Acharya V, Singh AK. Genome-wide identification and expression analysis of NBS-encoding genes in Malus x domestica and expansion of NBS genes family in Rosaceae. PLoS One. 2014;9:e107987.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kohler A, Rinaldi C, Duplessis S, Baucher M, Geelen D, et al. Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol Biol. 2008;66:619–36.
Article
CAS
PubMed
Google Scholar
Kang YJ, Kim KH, Shim S, Yoon MY, Sun S, et al. Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC Plant Biol. 2012;12:139.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lozano R, Ponce O, Ramirez M, Mostajo N, Orjeda G. Genome-wide identification and mapping of NBS-encoding resistance genes in Solanum tuberosum group phureja. PLoS One. 2012;7:e34775.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song H, Wang PF, Li TT, Xia H, Zhao SZ, et al. Genome-wide identification and evolutionary analysis of nucleotide-binding site-encoding resistance genes in Lotus japonicus (Fabaceae). Genet Mol Res. 2015;14:16024–40.
Article
CAS
PubMed
Google Scholar
Zhu Q, Fan L, Liu Y, Xu H, Llewellyn D, et al. miR482 Regulation of NBS-LRR Defense Genes during Fungal Pathogen Infection in Cotton. PLoS One. 2013;8:e84390.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhai J, Jeong DH, De Paoli E, Park S, Rosen BD, et al. MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev. 2011;25:2540–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shivaprasad PV, Chen HM, Patel K, Bond DM, Santos BA, et al. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell. 2012;24:859–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stein E, Molitor A, Kogel KH, Waller F. Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol. 2008;49:1747–51.
Article
CAS
PubMed
Google Scholar
Fu ZQ, Dong X. Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol. 2013;64:839–63.
Article
CAS
PubMed
Google Scholar
Choudhary DK, Johri BN. Interactions of Bacillus spp. and plants -with special reference to induced systemic resistance (ISR). Microbiol Res. 2009;164:493–513.
Article
CAS
PubMed
Google Scholar
Waller F, Mukherjee K, Deshmukh SD, Achatz B, Sharma M, et al. Systemic and local modulation of plant responses by Piriformospora indica and related Sebacinales species. J Plant Physiol. 2008;165:60–70.
Article
CAS
PubMed
Google Scholar
Schäfer P, Khatabi B, Kogel KH. Root cell death and systemic effects of Piriformospora indica: a study on mutualism. FEMS Microbiol Lett. 2007;275:1–7.
Article
PubMed
CAS
Google Scholar
Schäfer P, Pfiffi S, Voll LM, Zajic D, Chandler PM, et al. Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant J. 2009;59:461–74.
Article
PubMed
CAS
Google Scholar
Yang S, Perna NT, Cooksey DA, Okinaka Y, Lindow SE, Ibekwe AM, Keen NT, Yang C-H. Genome-wide identification of plant-Upregulated genes of Erwinia chrysanthemi 3937 using a GFP-based IVET leaf Array. Mol Plant-Microb Interact. 2004;17:999–1008.
Article
CAS
Google Scholar
Expert D. Withholding and exchanging iron: interactions between Erwinia spp. and their plant hosts. Annu. Rev. Phytopathol. 1999;37:307–34.
Article
CAS
Google Scholar
Franza T, Expert D. The virulence-associated chrysobactin iron uptake system of Erwinia chrysanthemi 3937 involves an operon encoding transport and biosynthetic functions. J Bacteriol. 1991;173:6874–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Franza T, Sauvage C, Expert D. Iron regulation and pathogenicity in Erwinia chrysanthemi 3937: role of the Fur repressor protein. Mol Plant-Microbe Interact. 1999;12:119–28.
Article
CAS
PubMed
Google Scholar
Hassouni ME, Chambost JP, Expert D, Van Gijsegem F, Barras F. The minimal gene set member msrA, encoding peptide methionine sulfoxide reductase, is a virulence determinant of the plant pathogen Erwinia chrysanthemi. Proc Natl Acad Sci U S A. 1999;96:887–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
López-Solanilla E, Llama-Palacios A, Collmer A, García-Olmedo F, Rodríguez-Palenzuela P. Relative effects on virulence of mutations in the sap, pel, and hrp loci of Erwinia chrysanthemi. Mol Plant-Microbe Interact. 2001;14:386–93.
Article
PubMed
Google Scholar
Tardy F, Nasser W, Robert-Baudouy J, Hugouvieux-Cotte-Pattat N. Comparative analysis of the five major Erwinia chrysanthemi pectate lyases: enzyme characteristics and potential inhibitors. J Bacteriol. 1997;179:2503–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chatterjee AK, Dumenyo CK, Liu Y, Chatterjee A. Erwinia: Genetics of pathogenicity factors. In: Lederberg J, editor. Encyclopedia of Microbiology, vol. 2. 2nd ed. New York: Academic Press; 2000. p. 236–59.
Google Scholar
Collmer A. Keen NT the role of pectic enzymes in plant pathogenesis. Annu Rev Phytopathol. 1986;24:383–409.
Article
CAS
Google Scholar
Hugouvieux-Cotte-Pattat N, Condemine G, Nasser W, Reverchon S. Regulation of pectinolysis in Erwinia. Annu Rev Microbiol. 1996;50:213–57.
Article
CAS
PubMed
Google Scholar
Perombelon MCM, Kelman A. Ecology of the soft rot erwinias. Annu. Rev. Phytopathol. 1980;18:361–87.49.
Article
Google Scholar
Croston TL, Lemons AR, Beezhold DH, Green BJ. MicroRNA regulation of host immune responses following fungal exposure. Front Immunol. 2018;9:170.
Article
PubMed
PubMed Central
CAS
Google Scholar
Islas-Flores T, Rahman A, Ullah H, Villanueva MA. The receptor for activated C kinase in plant signaling: tale of a promiscuous little molecule. Front Plant Sci. 2015;6:1090.
Article
PubMed
PubMed Central
Google Scholar
Claycomb JM. Ancient endo-siRNA pathways reveal new tricks. Curr Biol. 2014;24:R703–15.
Article
CAS
PubMed
Google Scholar
Seo JK, Wu J, Lii Y, Li Y, Jin H. Contribution of small RNA pathway components in plant immunity. Mol Plant-Microbe Interact. 2013;26:617–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Staiger D, Korneli C, Lummer M, Navarro L. Emerging role for RNA-based regulation in plant immunity. New Phytol. 2013;197:394–404.
Article
CAS
PubMed
Google Scholar
Naqvi AR, Sarwat M, Hasan S, Roychodhury N. Biogenesis, functions and fate of plant microRNAs. J Cell Physiol. 2012;227:3163–8.
Article
CAS
PubMed
Google Scholar
Hohn T, Vazquez F. RNA silencing pathways of plants: silencing and its suppression by plant DNA viruses. Biochim Biophys Acta. 1809;2011:588–600.
Google Scholar
Li Z, Rana TM. Molecular mechanisms of RNA-triggered gene silencing machineries. Acc Chem Res. 2012;45:1122–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu S, Sun YH, Amerson H, Chiang VL. MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J. 2007;51:1077–98.
Article
CAS
PubMed
Google Scholar
Bazin J, Bustos-Sanmamed P, Hartmann C, Lelandais-Briere C, Crespi M. Complexity of miRNA-dependent regulation in root symbiosis. Philos Trans R Soc B Biol Sci. 2012;367:1570–9.
Article
CAS
Google Scholar
Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, Tung J, Sun H, Kumar P, Baker B. MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci U S A. 2012;109(5):1790–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu Z, Jiang Q, Ni Z, Chen R, Xu S, Zhang H. Analyses of a Glycine max degradome library identify microRNA targets and microRNAs that trigger secondary siRNA biogenesis. J Integr Plant Biol. 2013;55(2):160–76.
Article
CAS
PubMed
Google Scholar
Shen D, Suhrkamp I, Wang Y, Liu S, Menkhaus J, Verreet JA, Fan L, Cai D. Identification and characterization of microRNAs in oilseed rape (Brassica napus) responsive to infection with the pathogenic fungus Verticillium longisporum using Brassica AA (Brassica rapa) and CC (Brassica oleracea) as reference genomes. New Phytol. 2014;204(3):577–94.
Article
CAS
PubMed
Google Scholar
Molitor A, Kogel KH. Induced resistance triggered by Piriformospora indica. Plant Signal Behav. 2009;4:215–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Staswick PE, Tiryaki I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell. 2004;16:2117–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell. 2004;16:1938–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao H, Bowling SA, Gordon AS, Dong X. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell. 1994;6:1583–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lawton K, Weymann K, Friedrich L, Vernooij B, Uknes S, Ryals J. Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene. Mol Plant-Microbe Interact. 1995;8:863–70.
Article
CAS
PubMed
Google Scholar
Pieterse CM, Van Wees SC, Van Pelt JA, Knoester M, Laan R, Gerrits H, et al. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell. 1998;10:1571–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knoester M, Pieterse CMJ, Bol JF, Van Loon LC. Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application. Mol Plant-Microbe Interact. 1999;12:720–7.
Article
CAS
PubMed
Google Scholar
Nie P, Li X, Wang S, Guo J, Zhao H, et al. Induced systemic resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-dependent signaling pathway activates PAMP-triggered immunity in Arabidopsis. Front Plant Sci. 2017;8:238.
PubMed
PubMed Central
Google Scholar
Iavicoli A, Boutet E, Buchala A, Metraux JP. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant-Microbe Interact. 2003;16:851–8.
Article
CAS
PubMed
Google Scholar
Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science. 1999;284:2148–52.
Article
CAS
PubMed
Google Scholar
Bleecker AB, Estelle MA, Somerville C, Kende H. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science. 1988;241:1086–9.
Article
CAS
PubMed
Google Scholar
Jacobs S, Zechmann B, Molitor A, Trujillo M, Petutschnig E, et al. Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant Physiol. 2011;156:726–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Molitor A, Zajic D, Voll LM, Pons-K Hnemann J, Samans B, Kogel KH, Waller F. Barley leaf transcriptome and metabolite analysis reveals new aspects of compatibility and Piriformospora indica-mediated systemic induced resistance to powdery mildew. Mol Plant-Microbe Interact. 2011;24:1427–39.
Article
CAS
PubMed
Google Scholar
Vahabi K, Camehl I, Sherameti I, Oelmüller R. Growth of Arabidopsis seedlings on high fungal doses of Piriformospora indica has little effect on plant performance, stress, and defense gene expression in spite of elevated jasmonic acid and jasmonic acid-isoleucine levels in the roots. Plant Signal Behav. 2013;8:e26301.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vahabi K, Dorcheh SK, Monajembashi S, Westermann M, Reichelt M, et al. Stress promotes Arabidopsis - Piriformospora indica interaction. Plant Signal Behav. 2016;11:e1136763.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xu L, Wu C, Oelmüller R, Zhang W. Role of Phytohormones in Piriformospora indica-induced growth promotion and stress tolerance in plants: more questions than answers. Front Microbiol. 2018;9:1646.
Article
PubMed
PubMed Central
Google Scholar
Glaeser SP, Imani J, Alabid I, Guo H, Kumar N, Kämpfer P, Hardt M, Blom J, Goesmann A, Rothballer M, Hartmann A, Kogel KH. Non-pathogenic rhizobium radiobacter F4 deploys plant beneficial activity independent of its host Piriformospora indica. ISME J. 2016;10:871–84.
Article
PubMed
Google Scholar
Pedrotti L, Mueller MJ, Waller F. Piriformospora indica root colonization triggers local and systemic root responses and inhibits secondary colonization of distal roots. PLoS One. 2013;8:e69352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang YQ, Ohara Y, Nakayashiki H, Tosa Y, Mayama S. Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria Pseudomonas fluorescens FPT9601-T5 in Arbidopsis. Mol Plant-Microbe Interact. 2005;18:385–96.
Article
CAS
PubMed
Google Scholar
Verhagen BWM, Glazebrook J, Zhu T, Chang HS, Van Loon LC, Pieterse CMJ. The transcriptome of rhizobacteria induced systemic resistance in Arabidopsis. Mol Plant-Microbe Interact. 2004;17:895–908.
Article
CAS
PubMed
Google Scholar
Van Wees SCM, Luijendijk M, Smoorenburg I, Van Loon LC, Pieterse CMJ. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect of expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Mol Biol. 1999;41:537–49.
Article
PubMed
Google Scholar
Lucas SJ, Baştaş K, Budak H. Exploring the interaction between small RNAs and R genes during Brachypodium response to Fusarium culmorum infection. Gene. 2014;536:254–64.
Article
CAS
PubMed
Google Scholar
Felle HH, Waller F, Molitor A, Kogel KH. The mycorrhiza fungus Piriformospora indica induces fast root-surface pH signaling and primes systemic alkalinization of the leaf apoplast upon powdery mildew infection. Mol Plant-Microbe Interact. 2009;22:1179–85.
Article
CAS
PubMed
Google Scholar
Gilroy S, Białasek M, Suzuki N, Górecka M, Devireddy AR, Karpiński S, Mittler R. ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol. 2016;171:1606–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bauer DW, Bogdanove AJ, Beer SV, Collmer A. Erwinia chrysanthemi hrp genes and their involvement in soft rot pathogenesis and elicitation of the hypersensitive response. Mol Plant-Microbe Interact. 1994;7:573–81.
Article
CAS
PubMed
Google Scholar
Rojas CM, Ham JH, Schechter LM, Kim JF, Beer SV, et al. The Erwinia chrysanthemi EC16 hrp/hrc gene cluster encodes an active Hrp type III secretion system that is flanked by virulence genes functionally unrelated to the Hrp system. Mol Plant-Microbe Interact. 2004;17:644–53.
Article
CAS
PubMed
Google Scholar
Fagard M, Dellagi A, Roux C, Perino C, Rigault M, et al. Arabidopsis thaliana expresses multiple lines of defense to counterattack Erwinia chrysanthemi. Mol Plant-Microbe Interact. 2007;20:794–805.
Article
CAS
PubMed
Google Scholar
Kraepiel Y, Pedron J, Patrit O, Simond-Cote E, Hermand V, et al. Analysis of the plant bos1 mutant highlights necrosis as an efficient defence mechanism during D. dadantii/Arabidospis thaliana interaction. PLoS One. 2011;6:e18991.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perez-Bueno ML, Granum E, Pineda M, Flors V, Rodriguez-Palenzuela P, et al. Temporal and spatial resolution of activated plant defense responses in leaves of Nicotiana benthamiana infected with Dickeya dadantii. Front Plant Sci. 2015;6:1209.
PubMed
Google Scholar
Li Y, Ye W, Jiang J. Observation on biological characteristics of 24 germplasm resources of Oncidium. Fujian Agric Sci Technol. 2013;Z1:99–101.
Google Scholar
Chen SP, Lin IW, Chen X, Huang YH, Chang SC, et al. Sweet potato NAC transcription factor, IbNAC1, upregulates sporamin gene expression by binding the SWRE motif against mechanical wounding and herbivore attack. Plant J. 2016;86:234–48.
Article
CAS
PubMed
Google Scholar
Senthilkumar S, Krishnamurthy KV, Britto SJ, Arockiasamy DI. Visualization of orchid mycorrhizal fungal structures with fluorescence dye using epifluorescence microscopy. Curr Sci. 2000;79:1527–8.
Google Scholar
Lozano R, Hamblin MT, Prochnik S, Jannink JL. Identification and distribution of the NBS-LRR gene family in the cassava genome. BMC Genomics. 2015;16:360.
Article
PubMed
PubMed Central
CAS
Google Scholar
An FM, Hsiao SR, Chan MT. Sequencing-based approaches reveal low ambient temperature-responsive and tissue-specific microRNAs in Phalaenopsis orchid. PLoS One. 2011;6:e18937.
Article
CAS
PubMed
PubMed Central
Google Scholar