Koyama K, Sadamatsu K, Goto-Yamamoto N. Abscisic acid stimulated ripening and gene expression in berry skins of the cabernet sauvignon grape. Funct Integr Genomics. 2010;10:367–81. https://doi.org/10.1007/s10142-009-0145-8.
Article
CAS
PubMed
Google Scholar
Chai YM, Jia HF, Li CL, Dong QH, Shen YY. FaPYR1 is involved in strawberry fruit ripening. J Exp Bot. 2011;62:5079–89.
Article
CAS
PubMed
Google Scholar
Chen L, Liu Y, Liu H, Kang L, Geng J, Gai Y, et al. Identification and expression analysis of MATE genes involved in flavonoid transport in blueberry plants. PLoS One. 2015;10:e0118578. https://doi.org/10.1371/journal.pone.0118578.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen J, Liu D, Jiang Y, Zhao M, Shan W, Kuang J, et al. Molecular characterization of a strawberry FaASR gene in relation to fruit ripening. PLoS One. 2011;6:e24649. https://doi.org/10.1371/journal.pone.0024649.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jia H-F, Chai Y-M, Li C-L, Lu D, Luo J-J, Qin L, et al. Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol. 2011;157:188–99. https://doi.org/10.1104/pp.111.177311.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cumplido-Laso G, Medina-Puche L, Moyano E, Hoffmann T, Sinz Q, Ring L, et al. The fruit ripening-related gene FaAAT2 encodes an acyl transferase involved in strawberry aroma biogenesis. J Exp Bot. 2012;63:4275–90. https://doi.org/10.1093/jxb/ers120.
Article
CAS
PubMed
Google Scholar
Daminato M, Guzzo F, Casadoro G. A SHATTERPROOF-like gene controls ripening in non-climacteric strawberries, and auxin and abscisic acid antagonistically affect its expression. J Exp Bot. 2013;64:3775–86. https://doi.org/10.1093/jxb/ert214.
Article
CAS
PubMed
PubMed Central
Google Scholar
Medina-Puche L, Molina-Hidalgo FJ, Boersma M, Schuurink RC, López-Vidriero I, Solano R, et al. An R2R3-MYB transcription factor regulates eugenol production in ripe strawberry fruit receptacles. Plant Physiol. 2015;168:598–614. https://doi.org/10.1104/pp.114.252908.
Article
CAS
PubMed
PubMed Central
Google Scholar
Medina-Puche L, Cumplido-Laso G, Amil-Ruiz F, Hoffmann T, Ring L, Rodríguez-Franco A, et al. MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria × ananassa fruits. J Exp Bot. 2014;65:401–17.
Article
CAS
PubMed
Google Scholar
Molina-Hidalgo FJ, Medina-Puche L, Gelis S, Ramos J, Sabir F, Soveral G, et al. Functional characterization of FaNIP1;1 gene, a ripening-related and receptacle-specific aquaporin in strawberry fruit. Plant Sci. 2015;238:198–211.
Article
CAS
PubMed
Google Scholar
Molina-Hidalgo FJ, Medina-Puche L, Cañete-Gómez C, Franco-Zorrilla JM, López-Vidriero I, Solano R, et al. The fruit-specific transcription factor FaDOF2 regulates the production of eugenol in ripe fruit receptacles. J Exp Bot. 2017;68:4529–43. https://doi.org/10.1093/jxb/erx257.
Article
CAS
PubMed
Google Scholar
Zhang Y, Yin X, Xiao Y, Zhang Z, Li S, Liu X, et al. An ethylene response factor-MYB transcription complex regulates furaneol biosynthesis by activating quinone oxidoreductase expression in strawberry. Plant Physiol. 2018:00598.2018. https://doi.org/10.1104/pp.18.00598.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salvatierra A, Pimentel P, Moya-León MA, Herrera R. Increased accumulation of anthocyanins in Fragaria chiloensis fruits by transient suppression of FcMYB1 gene. Phytochemistry. 2013;90:25–36. https://doi.org/10.1016/j.phytochem.2013.02.016.
Article
CAS
PubMed
Google Scholar
Vallarino JG, Osorio S, Bombarely A, Casañal A, Cruz-Rus E, Sánchez-Sevilla JF, et al. Central role of FaGAMYB in the transition of the strawberry receptacle from development to ripening. New Phytol. 2015;208:482–96.
Article
CAS
PubMed
Google Scholar
Pillet J, Yu H-W, Chambers AH, Whitaker VM, Folta KM. Identification of candidate flavonoid pathway genes using transcriptome correlation network analysis in ripe strawberry ( Fragaria × ananassa ) fruits. J Exp Bot. 2015;66:4455–67. https://doi.org/10.1093/jxb/erv205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei L, Mao W, Jia M, Xing S, Ali U, Zhao Y, et al. FaMYB44.2, a transcriptional repressor, negatively regulates sucrose accumulation in strawberry receptacles through interplay with FaMYB10. J Exp Bot. 2018;69:4805–20. https://doi.org/10.1093/jxb/ery249.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schaart JG, Dubos C, Romero De La Fuente I, van Houwelingen AMML, de Vos RCH, Jonker HH, et al. Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria × ananassa) fruits. New Phytol. 2013;197:454–67. https://doi.org/10.1111/nph.12017.
Article
CAS
PubMed
Google Scholar
Zhao F, Li G, Hu P, Zhao X, Li L, Wei W, et al. Identification of basic/helix-loop-helix transcription factors reveals candidate genes involved in anthocyanin biosynthesis from the strawberry white-flesh mutant. Sci Rep. 2018;8:2721. https://doi.org/10.1038/s41598-018-21136-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Medina-Puche L, Blanco-Portales R, Molina-Hidalgo FJ, Cumplido-Laso G, García-Caparrós N, Moyano-Cañete E, et al. Extensive transcriptomic studies on the roles played by abscisic acid and auxins in the development and ripening of strawberry fruits. Funct Integr Genomics. 2016;16:671–92. https://doi.org/10.1007/s10142-016-0510-3.
Article
CAS
PubMed
Google Scholar
Lee S, Lee S, Yang K-Y, Kim Y-M, Park S-Y, Kim SY, et al. Overexpression of PRE1 and its homologous genes activates gibberellin-dependent responses in Arabidopsis thaliana. Plant Cell Physiol. 2006;47:591–600. https://doi.org/10.1093/pcp/pcj026.
Article
CAS
PubMed
Google Scholar
Roig-Villanova I, Bou-Torrent J, Galstyan A, Carretero-Paulet L, Portolés S, Rodríguez-Concepción M, et al. Interaction of shade avoidance and auxin responses: a role for two novel atypical bHLH proteins. EMBO J. 2007;26:4756–67. https://doi.org/10.1038/sj.emboj.7601890.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martinez-Garcia JF, Bilbao-Castro JR, Robertson DL. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiol. 2010;153:1398–412. https://doi.org/10.1104/pp.110.153593.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang C, Feng R, Ma R, Shen Z, Cai Z, Song Z, et al. Genome-wide analysis of basic helix-loop-helix superfamily members in peach. PLoS One. 2018;13:e0195974. https://doi.org/10.1371/journal.pone.0195974.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei K, Chen H. Comparative functional genomics analysis of bHLH gene family in rice, maize and wheat. BMC Plant Biol. 2018;18:309. https://doi.org/10.1186/s12870-018-1529-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Massari ME, Murre C. Helix-loop-helix proteins: regulators of transcription in Eucaryotic organisms. Mol Cell Biol. 2000;20:429–40. https://doi.org/10.1128/MCB.20.2.429-440.2000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toledo-Ortiz G, Huq E, Quail PH. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell. 2003;15:1749–70. https://doi.org/10.1105/tpc.013839.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herold S, Wanzel M, Beuger V, Frohme C, Beul D, Hillukkala T, et al. Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol Cell. 2002;10:509–21 http://www.ncbi.nlm.nih.gov/pubmed/12408820.
Article
CAS
PubMed
Google Scholar
Hernandez JM, Feller A, Morohashi K, Frame K, Grotewold E. The basic helix loop helix domain of maize R links transcriptional regulation and histone modifications by recruitment of an EMSY-related factor. Proc Natl Acad Sci. 2007;104:17222–7. https://doi.org/10.1073/pnas.0705629104.
Article
PubMed
PubMed Central
Google Scholar
Shin K, Lee I, Kim E, Park S, Soh M-S, Lee S. PACLOBUTRAZOL-RESISTANCE gene family regulates floral organ growth with unequal genetic redundancy in Arabidopsis thaliana. Int J Mol Sci. 2019;20:869. https://doi.org/10.3390/ijms20040869.
Article
CAS
PubMed Central
Google Scholar
Castelain M, Le Hir R, Bellini C. The non-DNA-binding bHLH transcription factor PRE3/bHLH135/ATBS1/TMO7 is involved in the regulation of light signaling pathway in Arabidopsis. Physiol Plant. 2012;145:450–60. https://doi.org/10.1111/j.1399-3054.2012.01600.x.
Article
CAS
PubMed
Google Scholar
Ikeda M, Fujiwara S, Mitsuda N, Ohme-Takagi M. A triantagonistic basic helix-loop-helix system regulates cell elongation in Arabidopsis. Plant Cell. 2012;24:4483–97. https://doi.org/10.1105/tpc.112.105023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ikeda M, Mitsuda N, Ohme-Takagi M. ATBS1 interacting factors negatively regulate Arabidopsis cell elongation in the triantagonistic bHLH system. Plant Signal Behav. 2013;8:e23448. https://doi.org/10.4161/psb.23448.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu Z, Chen G, Guo X, Yin W, Yu X, Hu J, et al. Overexpression of SlPRE2, an atypical bHLH transcription factor, affects plant morphology and fruit pigment accumulation in tomato. Sci Rep. 2017;7:5786. https://doi.org/10.1038/s41598-017-04092-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu Z, Liang H, Chen G, Li F, Wang Y, Liao C, et al. The bHLH transcription factor SlPRE2 regulates tomato fruit development and modulates plant response to gibberellin. Plant Cell Rep. 2019. https://doi.org/10.1007/s00299-019-02425-x.
Article
CAS
PubMed
Google Scholar
Hyun Y, Lee I. KIDARI, encoding a non-DNA binding bHLH protein, represses light signal transduction in Arabidopsis thaliana. Plant Mol Biol. 2006;61:283–96. https://doi.org/10.1007/s11103-006-0010-2.
Article
CAS
PubMed
Google Scholar
Kim Y, Song J-H, Park S-U, Jeong Y-S, Kim S-H. Brassinosteroid-induced transcriptional repression and dephosphorylation-dependent protein degradation negatively regulate BIN2-interacting AIF2 (a BR signaling-negative regulator) bHLH transcription factor. Plant Cell Physiol cell Physiol. 2017;58:227–39. https://doi.org/10.1093/pcp/pcw223.
Article
CAS
Google Scholar
Lu R, Zhang J, Liu D, Wei Y-L, Wang Y, Li X-B. Characterization of bHLH/HLH genes that are involved in brassinosteroid (BR) signaling in fiber development of cotton (Gossypium hirsutum). BMC Plant Biol. 2018;18:304. https://doi.org/10.1186/s12870-018-1523-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oh E, Zhu J-Y, Bai M-Y, Arenhart RA, Sun Y, Wang Z-Y. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. Elife. 2014;3. https://doi.org/10.7554/eLife.03031.
Wang H, Zhu Y, Fujioka S, Asami T, Li J, Li J. Regulation of Arabidopsis brassinosteroid signaling by atypical basic helix-loop-helix proteins. Plant Cell. 2009;21:3781–91. https://doi.org/10.1105/tpc.109.072504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heang D, Sassa H. An atypical bHLH protein encoded by positive regulator of grain length 2 is involved in controlling grain length and weight of rice through interaction with a typical bHLH protein APG. Breed Sci. 2012;62:133–41. https://doi.org/10.1270/jsbbs.62.133.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jang S, An G, Li H-Y. Rice leaf angle and grain size are affected by the OsBUL1 transcriptional activator complex. Plant Physiol. 2017;173:688–702. https://doi.org/10.1104/pp.16.01653.
Article
CAS
PubMed
Google Scholar
Chen K-Y, Cong B, Wing R, Vrebalov J, Tanksley SD. Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science (80- ). 2007;318:643–5. https://doi.org/10.1126/science.1148428.
Article
CAS
Google Scholar
Bai M-Y, Fan M, Oh E, Wang Z-Y. A triple helix-loop-helix/basic helix-loop-helix cascade controls cell elongation downstream of multiple hormonal and environmental signaling pathways in Arabidopsis. Plant Cell. 2012;24:4917–29. https://doi.org/10.1105/tpc.112.105163.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Wei W, Feng J, Luo H, Pi M, Liu Z, et al. Genome re-annotation of the wild strawberry Fragaria vesca using extensive Illumina- and SMRT-based RNA-seq datasets. DNA Res. 2017. https://doi.org/10.1093/dnares/dsx038.
Article
PubMed Central
Google Scholar
Edger PP, Poorten TJ, VanBuren R, Hardigan MA, Colle M, McKain MR, et al. Origin and evolution of the octoploid strawberry genome. Nat Genet. 2019;51:541–7. https://doi.org/10.1038/s41588-019-0356-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang M, Yang D, Ma F, Zhu M, Shi Z, Miao X. OsHLH61-OsbHLH96 influences rice defense to brown planthopper through regulating the pathogen-related genes. Rice (N Y). 2019;12(9). https://doi.org/10.1186/s12284-019-0267-0.
Cui J, You C, Zhu E, Huang Q, Ma H, Chang F. Feedback regulation of DYT1 by interactions with downstream bHLH factors promotes DYT1 nuclear localization and anther development. Plant Cell. 2016;28:1078–93. https://doi.org/10.1105/tpc.15.00986.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu Z, Liu X, He X, Xu L, Huang Y, Shao H, et al. The soybean basic helix-loop-helix transcription factor ORG3-like enhances cadmium tolerance via increased Iron and reduced cadmium uptake and transport from roots to shoots. Front Plant Sci. 2017;8:1098.
Article
PubMed
PubMed Central
Google Scholar
Csukasi F, Osorio S, Gutierrez JR, Kitamura J, Giavalisco P, Nakajima M, et al. Gibberellin biosynthesis and signalling during development of the strawberry receptacle. New Phytol. 2011;191:376–90.
Article
CAS
PubMed
Google Scholar
Symons GM, Chua Y-J, Ross JJ, Quittenden LJ, Davies NW, Reid JB. Hormonal changes during non-climacteric ripening in strawberry. J Exp Bot. 2012;63:4741–50. https://doi.org/10.1093/jxb/ers147.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quesada MA, Blanco-Portales R, Pose S, Garcia-Gago JA, Jimenez-Bermudez S, Munoz-Serrano A, et al. Antisense down-regulation of the FaPG1 gene reveals an unexpected central role for Polygalacturonase in strawberry fruit softening. Plant Physiol. 2009;150:1022–32. https://doi.org/10.1104/pp.109.138297.
Article
PubMed
PubMed Central
Google Scholar
Molina-Hidalgo FJ, Franco AR, Villatoro C, Medina-Puche L, Mercado JA, Hidalgo MA, et al. The strawberry (Fragaria×ananassa) fruit-specific rhamnogalacturonate lyase 1 (FaRGLyase1) gene encodes an enzyme involved in the degradation of cell-wall middle lamellae. J Exp Bot. 2013;64:1471–83.
Article
CAS
PubMed
Google Scholar
Fu X, Cheng S, Zhang Y, Du B, Feng C, Zhou Y, et al. Differential responses of four biosynthetic pathways of aroma compounds in postharvest strawberry ( Fragaria × ananassa Duch.) under interaction of light and temperature. Food Chem. 2017;221:356–64. https://doi.org/10.1016/j.foodchem.2016.10.082.
Article
CAS
PubMed
Google Scholar
Aharoni A, Keizer LCP, Bouwmeester HJ, Sun Z, Alvarez-Huerta M, Verhoeven HA, et al. Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell. 2000;12:647. https://doi.org/10.2307/3870992.
Article
CAS
PubMed
PubMed Central
Google Scholar
Almeida JRM, D’Amico E, Preuss A, Carbone F, de Vos CHR, Deiml B, et al. Characterization of major enzymes and genes involved in flavonoid and proanthocyanidin biosynthesis during fruit development in strawberry (Fragaria ×ananassa). Arch Biochem Biophys. 2007;465:61–71. https://doi.org/10.1016/j.abb.2007.04.040.
Article
CAS
PubMed
Google Scholar
Blanco-Portales R, Medina-Escobar N, López-Ráez JA, González-Reyes JA, Villalba JM, Moyano E, et al. Cloning, expression and immunolocalization pattern of a cinnamyl alcohol dehydrogenase gene from strawberry (Fragaria x ananassa cv. Chandler). J Exp Bot. 2002;53:1723–34. https://doi.org/10.1093/jxb/erf029.
Article
CAS
PubMed
Google Scholar
Araguez I, Osorio S, Hoffmann T, Rambla JL, Medina-Escobar N, Granell A, et al. Eugenol production in Achenes and receptacles of strawberry fruits is catalyzed by synthases exhibiting distinct kinetics. Plant Physiol. 2013;163:946–58. https://doi.org/10.1104/pp.113.224352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barnes WJ, Anderson CT. Release, recycle, rebuild: cell-wall remodeling, autodegradation, and sugar salvage for new wall biosynthesis during plant development. Mol Plant. 2018;11:31–46. https://doi.org/10.1016/j.molp.2017.08.011.
Article
CAS
PubMed
Google Scholar
Perkins-Veazie P. Growth and ripening of strawberry fruit. In: Horticultural reviews. Oxford: John Wiley & Sons, Inc.; 1995. p. 267–97. https://doi.org/10.1002/9780470650585.ch8.
Chapter
Google Scholar
Heang D, Sassa H. Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice. PLoS One. 2012;7:e31325. https://doi.org/10.1371/journal.pone.0031325.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raab T, López-Ráez JA, Klein D, Caballero JL, Moyano E, Schwab W, et al. FaQR, required for the biosynthesis of the strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone, encodes an enone oxidoreductase. Plant Cell. 2006;18:1023–37. https://doi.org/10.1105/tpc.105.039784.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mara CD, Huang T, Irish VF. The Arabidopsis floral homeotic proteins APETALA3 and PISTILLATA negatively regulate the BANQUO genes implicated in light signaling. Plant Cell. 2010;22:690–702. https://doi.org/10.1105/tpc.109.065946.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng K, Wang Y, Wang S. The non-DNA binding bHLH transcription factor Paclobutrazol resistances are involved in the regulation of ABA and salt responses in Arabidopsis. Plant Physiol Biochem PPB. 2019;139:239–45. https://doi.org/10.1016/j.plaphy.2019.03.026.
Article
CAS
PubMed
Google Scholar
Zhang L-Y, Bai M-Y, Wu J, Zhu J-Y, Wang H, Zhang Z, et al. Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. Plant Cell. 2009;21:3767–80. https://doi.org/10.1105/tpc.109.070441.
Article
CAS
PubMed
PubMed Central
Google Scholar
Butcher DN, Clark JA, Lenton JR. Gibberellins and the growth of excised tomato roots: comparison of gib-1 mutant and wild type and responses to applied GA 3 and 2 S , 3 S paclobutrazol. J Exp Bot. 1990;41:715–22. https://doi.org/10.1093/jxb/41.6.715.
Article
CAS
Google Scholar
Barceló M, El-Mansouri I, Mercado JA, Quesada MA, Pliego-Alfaro F. Regeneration and transformation via agrobacterium tumefaciens of the strawberry cultivar chandler. Plant Tissue Cult Biotechnol. 1998;54:29–36. https://doi.org/10.1023/A:1006031527413.
Article
Google Scholar
Creelman RA, Bell E, Mullet JE. Involvement of a Lipoxygenase-like enzyme in abscisic acid biosynthesis. Plant Physiol. 1992;99:1258–60. https://doi.org/10.1104/pp.99.3.1258.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoffmann T, Kalinowski G, Schwab W. RNAi-induced silencing of gene expression in strawberry fruit (Fragaria x ananassa) by agroinfiltration: a rapid assay for gene function analysis. Plant J. 2006;48:818–26. https://doi.org/10.1111/j.1365-313X.2006.02913.x.
Article
CAS
PubMed
Google Scholar
Karimi M, Inzé D, Depicker A. GATEWAY vectors for agrobacterium-mediated plant transformation. Trends Plant Sci. 2002;7:193–5 http://www.ncbi.nlm.nih.gov/pubmed/11992820.
Article
CAS
PubMed
Google Scholar
Asif MH, Dhawan P, Nath P. A simple procedure for the isolation of high quality rna from ripening banana fruit. Plant Mol Biol Report. 2000;18:109–15.
Article
CAS
Google Scholar
Benítez-Burraco A, Blanco-Portales R, Redondo-Nevado J, Bellido ML, Moyano E, Caballero JL, et al. Cloning and characterization of two ripening-related strawberry (Fragaria x ananassa cv. Chandler) pectate lyase genes. J Exp Bot. 2003;54:633–45.
Article
PubMed
Google Scholar
Pedersen S, Amtssygehus A. Multiplex relative gene expression analysis by real-time RT-PCR using the iCycler iQ detection system. BioRadiations. 2001;107:10–1 http://www.bio-rad.com/LifeScience/pdf/Bulletin_2696.pdf.
Google Scholar
Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, et al. The genome of woodland strawberry (Fragaria vesca). Nat Genet. 2011;43:109–16. https://doi.org/10.1038/ng.740.
Article
CAS
PubMed
Google Scholar
Hao Y, Oh E, Choi G, Liang Z, Wang Z-Y. Interactions between HLH and bHLH factors modulate light-regulated plant development. Mol Plant. 2012;5:688–97. https://doi.org/10.1093/mp/sss011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agius F, González-Lamothe R, Caballero JL, Muñoz-Blanco J, Botella MA, Valpuesta V. Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat Biotechnol. 2003;21:177–81. https://doi.org/10.1038/nbt777.
Article
CAS
PubMed
Google Scholar
Ma N, Xue J, Li Y, Liu X, Dai F, Jia W, et al. Rh-PIP2;1, a rose aquaporin gene, is involved in ethylene-regulated petal expansion. Plant Physiol. 2008;148:894–907. https://doi.org/10.1104/pp.108.120154.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salentijn EMJ, Aharoni A, Schaart JG, Boone MJ, Krens FA. Differential gene expression analysis of strawberry cultivars that differ in fruit-firmness. Physiol Plant. 2003;118:571–8. https://doi.org/10.1034/j.1399-3054.2003.00138.x.
Article
CAS
Google Scholar
Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie TK, et al. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol. 2010;10:50. https://doi.org/10.1186/1471-2229-10-50.
Article
CAS
PubMed
PubMed Central
Google Scholar