Wyatt R. Inflorescence architecture: how flower number, arrangement, and phenology affect pollination and fruit-set. Am J Bot. 1982;69(4):585–94.
Article
Google Scholar
Prenner G, Vergara-Silva F, Rudall PJ. The key role of morphology in modelling inflorescence architecture. Trends Plant Sci. 2009;14(6):302–9.
Article
CAS
PubMed
Google Scholar
Endress PK. Disentangling confusions in inflorescence morphology: patterns and diversity of reproductive shoot ramification in angiosperms. J Syst Evol. 2010;48(4):225–39.
Article
Google Scholar
Ma Q, Zhang W, Xiang Q-Y. Evolution and developmental genetics of floral display—a review of progress. J Syst Evol. 2017;55(6):487–515.
Article
Google Scholar
Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science. 2000;289(5479):617–9.
Article
CAS
PubMed
Google Scholar
Laux T, Mayer KF, Berger J, Jurgens G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development. 1996;122(1):87–96.
CAS
PubMed
Google Scholar
Schoof H, Lenhard M, Haecker A, Mayer KF, Jurgens G, Laux T. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell. 2000;100(6):635–44.
Article
CAS
PubMed
Google Scholar
Bommert P, Lunde C, Nardmann J, Vollbrecht E, Running M, Jackson D, Hake S, Werr W. thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development. 2005;132(6):1235–45.
Article
CAS
PubMed
Google Scholar
Taguchi-Shiobara F, Yuan Z, Hake S, Jackson D. The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev. 2001;15(20):2755–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thompson BE, Hake S. Translational biology: from Arabidopsis flowers to grass inflorescence architecture. Plant Physiol. 2009;149(1):38–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ratcliffe OJ, Bradley DJ, Coen ES. Separation of shoot and floral identity in Arabidopsis. Development. 1999;126(6):1109–20.
CAS
PubMed
Google Scholar
Shannon S, Meeks-Wagner DR. A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell. 1991;3(9):877–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ratcliffe OJ, Amaya I, Vincent CA, Rothstein S, Carpenter R, Coen ES, Bradley DJ. A common mechanism controls the life cycle and architecture of plants. Development. 1998;125(9):1609–15.
CAS
PubMed
Google Scholar
Liljegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS, Yanofsky MF. Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell. 1999;11(6):1007–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu C, Teo ZW, Bi Y, Song S, Xi W, Yang X, Yin Z, Yu H. A conserved genetic pathway determines inflorescence architecture in Arabidopsis and rice. Dev Cell. 2013;24(6):612–22.
Article
CAS
PubMed
Google Scholar
Nakagawa M, Shimamoto K, Kyozuka J. Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J. 2002;29(6):743–50.
Article
CAS
PubMed
Google Scholar
Danilevskaya ON, Meng X, Ananiev EV. Concerted modification of flowering time and inflorescence architecture by ectopic expression of TFL1-like genes in maize. Plant Physiol. 2010;153(1):238–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshida A, Sasao M, Yasuno N, Takagi K, Daimon Y, Chen R, Yamazaki R, Tokunaga H, Kitaguchi Y, Sato Y, Nagamura Y, Ushijima T, Kumamaru T, Iida S, Maekawa M, Kyozuka J. TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition. Proc Natl Acad Sci. 2013;110(2):767–72.
Article
CAS
PubMed
Google Scholar
Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet. 2010;42(6):541–4.
Article
CAS
PubMed
Google Scholar
Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet. 2010;42(6):545–9.
Article
CAS
PubMed
Google Scholar
Wang L, Zhang Q. Boosting rice yield by fine-tuning SPL gene expression. Trends Plant Sci. 2017;22(8):643–6.
Article
CAS
PubMed
Google Scholar
Du Y, Liu L, Li M, Fang S, Shen X, Chu J, Zhang Z. UNBRANCHED3 regulates branching by modulating cytokinin biosynthesis and signaling in maize and rice. New Phytol. 2017;214(2):721–33.
Article
CAS
PubMed
Google Scholar
Chuck G, Meeley R, Hake S. Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1. Development. 2008;135(18):3013–9.
Article
CAS
PubMed
Google Scholar
Vollbrecht E, Springer PS, Goh L, Buckler Iv ES, Martienssen R. Architecture of floral branch systems in maize and related grasses. Nature. 2005;436(7054):1119–26.
Article
CAS
PubMed
Google Scholar
Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D. A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature. 2006;441(7090):227–30.
Article
CAS
PubMed
Google Scholar
Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S. ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell. 2006;18(3):574–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barazesh S, McSteen P. Hormonal control of grass inflorescence development. Trends Plant Sci. 2008;13(12):656–62.
Article
CAS
PubMed
Google Scholar
Kyozuka J. Control of shoot and root meristem function by cytokinin. Curr Opin Plant Biol. 2007;10(5):442–6.
Article
CAS
PubMed
Google Scholar
Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science. 2001;291(5502):306–9.
Article
CAS
PubMed
Google Scholar
Gallavotti A, Barazesh S, Malcomber ST, Hall D, Schmidt RJ, McSteen P. sparse inflorescence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize. Proc Natl Acad Sci. 2008;105(39):15196–201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okada K, Ueda J, Komaki MK, Shimura Y. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell. 1991;3(7):677–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bennett S, Alvarez J, Bossinger G. Morphogenesis in pinoid mutants of Arabidopsis thaliana. Plant J. 1995;8:505–20.
Article
CAS
Google Scholar
Hake S. Barren inflorescence2 regulates axillary meristem development in the maize inflorescence. Development. 2001;128(15):2881–91.
PubMed
Google Scholar
Barazesh S. barren inflorescence1 functions in organogenesis during vegetative and inflorescence development in maize. Genetics. 2008;179(1):389.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ritter MK, Padilla CM, Schmidt RJ. The maize mutant barren stalk1 is defective in axillary meristem development. Am J Bot. 2002;89(2):203–10.
Article
PubMed
Google Scholar
Huang P, Jiang H, Zhu C, Barry K, Jenkins J, Sandor L, Schmutz J, Box MS, Kellogg EA, Brutnell TP. Sparse panicle1 is required for inflorescence development in Setaria viridis and maize. Nature Plants. 2017;3:17054.
Article
CAS
PubMed
Google Scholar
Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature. 2007;445(7128):652–5.
Article
CAS
PubMed
Google Scholar
Bartrina I, Otto E, Strnad M, Werner T, Schmulling T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell. 2011;23(1):69–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science. 2005;309(5735):741–5.
Article
CAS
PubMed
Google Scholar
Li S, Zhao B, Yuan D, Duan M, Qian Q, Tang L, Wang B, Liu X, Zhang J, Wang J. Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc Natl Acad Sci. 2013;110(8):3167–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N, Takahashi C, Nakayama S, Kishida Y, Kohara M, Yamada M, Tsuruoka H, Sasamoto S, Tabata S, Aizu T, Toyoda A, Shin-i T, Minakuchi Y, Kohara Y, Fujiyama A, Tsuchimoto S, Kajiyama S, Makigano E, Ohmido N, Shibagaki N, Cartagena JA, et al. Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res. 2011;18(1):65–76.
Article
CAS
PubMed
Google Scholar
Fairless D. Biofuel: the little shrub that could--maybe. Nature. 2007;449(7163):652–5.
Article
PubMed
Google Scholar
Pan B-Z, Xu Z-F. Benzyladenine treatment significantly increases the seed yield of the biofuel plant Jatropha curcas. J Plant Growth Regul. 2011;30(2):166–74.
Article
CAS
Google Scholar
Li C, Fu Q, Niu L, Luo L, Chen J, Xu Z-F. Three TFL1 homologues regulate floral initiation in the biofuel plant Jatropha curcas. Sci Rep. 2017;7:43090.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li C, Luo L, Fu Q, Niu L, Xu Z-F. Identification and characterization of the FT/TFL1 gene family in the biofuel plant Jatropha curcas. Plant Mol Biol Report. 2015;33(2):326–33.
Article
CAS
Google Scholar
Tang MY, Tao YB, Xu ZF. Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha. PeerJ. 2016;4:e1969.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ghosh A, Chikara J, Chaudhary DR, Prakash AR, Boricha G, Zala A. Paclobutrazol arrests vegetative growth and unveils unexpressed yield potential of Jatropha curcas. J Plant Growth Regul. 2010;29(3):307–15.
Article
CAS
Google Scholar
Song J, Chen M-S, Li J, Niu L, Xu Z. Effects of soil-applied paclobutrazol on the vegetative and reproductive growth of biofuel plant Jatropha curcas. Plant Diver Resour. 2013;35(2):173–9.
Google Scholar
Chen M-S, Pan B-Z, Wang G-J, Ni J, Niu L, Xu Z-F. Analysis of the transcriptional responses in inflorescence buds of Jatropha curcas exposed to cytokinin treatment. BMC Plant Biol. 2014;14(1):318.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pan B-Z, Chen M-S, Ni J, Xu Z-F. Transcriptome of the inflorescence meristems of the biofuel plant Jatropha curcas treated with cytokinin. BMC Genomics. 2014;15(1):974.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen M-S, Pan B-Z, Fu Q, Tao Y-B, Martínez-Herrera J, Niu L, Ni J, Dong Y, Zhao M-L, Xu Z-F. Comparative transcriptome analysis between gynoecious and monoecious plants identifies regulatory networks controlling sex determination in Jatropha curcas. Front Plant Sci. 2017;7:1953.
PubMed
PubMed Central
Google Scholar
Chekanova JA. Long non-coding RNAs and their functions in plants. Curr Opin Plant Biol. 2015;27:207–16.
Article
CAS
PubMed
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9(1):559.
Article
PubMed
PubMed Central
CAS
Google Scholar
Moffatt BA, Wang L, Allen MS, Stevens YY, Qin W, Snider J, von Schwartzenberg K. Adenosine kinase of Arabidopsis. Kinetic properties and gene expression. Plant Physiol. 2000;124(4):1775–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schoor S, Farrow S, Blaschke H, Lee S, Perry G, von Schwartzenberg K, Emery N, Moffatt B. Adenosine kinase contributes to cytokinin interconversion in Arabidopsis. Plant Physiol. 2011;157(2):659–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Chen Y, Lin X, Hong X, Zhu Y, Li W, He W, An F, Guo H. Adenine Phosphoribosyl Transferase 1 is a key enzyme catalyzing Cytokinin conversion from Nucleobases to nucleotides in Arabidopsis. Mol Plant. 2013;6(5):1661–72.
Article
CAS
PubMed
Google Scholar
Kakimoto T. Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate: ATP/ADP isopentenyltransferases. Plant Cell Physiol. 2001;42(7):677–85.
Article
CAS
PubMed
Google Scholar
Schmülling T, Werner T, Riefler M, Krupková E, Bartrina y Manns I. Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J Plant Res. 2003;116(3):241–52.
Article
PubMed
CAS
Google Scholar
Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Dolezal K, Schlereth A, Jurgens G, Alonso JM. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell. 2008;133(1):177–91.
Article
CAS
PubMed
Google Scholar
Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P, Zhao Y, Hayashi K, Kamiya Y, Kasahara H. The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci. 2011;108(45):18512–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature. 2005;433(7021):39–44.
Article
CAS
PubMed
Google Scholar
Christensen SK, Dagenais N, Chory J, Weigel D. Regulation of auxin response by the protein kinase PINOID. Cell. 2000;100(4):469–78.
Article
CAS
PubMed
Google Scholar
Qin G, Gu H, Zhao Y, Ma Z, Shi G, Yang Y, Pichersky E, Chen H, Liu M, Chen Z. An indole-3-acetic acid carboxyl methyltransferase regulates Arabidopsis leaf development. Plant Cell. 2005;17(10):2693–704.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol. 2001;126(2):524–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seo M, Akaba S, Oritani T, Delarue M, Bellini C, Caboche M, Koshiba T. Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana. Plant Physiol. 1998;116(2):687–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan B-Z, Luo Y, Song L, Chen M-S, Li J-L, Xu Z-F. Thidiazuron increases fruit number in the biofuel plant Jatropha curcas by promoting pistil development. Ind Crop Prod. 2016;81:202–1.
Article
CAS
Google Scholar
Zhang M, Zhan F, Sun H, Gong X, Fei Z, Gao S: Fastq_clean: an optimized pipeline to clean the Illumina sequencing data with quality control. In: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM 2014). Belfast, UK: 2014;44–48.
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–512.
Article
CAS
PubMed
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Davidson NM, Oshlack A. Corset: enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biol. 2014;15(7):410.
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
CAS
PubMed
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.
Article
CAS
PubMed
PubMed Central
Google Scholar