Ramankutty N, Mehrabi Z, Waha K, Jarvis L, Kremen C, Herrero M, Rieseberg LH. Trends in global agricultural land use: implications for environmental health and food security. Annu Rev Plant Biol. 2018; 69:789–815.
Article
CAS
PubMed
Google Scholar
Reynolds M, Foulkes MJ, Slafer GA, Berry P, Parry MA, Snape JW, Angus WJ. Raising yield potential in wheat. J Exp Bot. 2009; 60(7):1899–918.
Article
CAS
PubMed
Google Scholar
Hall AJ, Richards RA. Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crops Res. 2013; 143:18–33.
Article
Google Scholar
Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, Huang M, Yao Y, Bassu S, Ciais P, et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci. 2017; 114(35):9326–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
García GA, Miralles DJ, Serrago RA, Alzueta I, Huth N, Dreccer MF. Warm nights in the argentine pampas: Modelling its impact on wheat and barley shows yield reductions. Agric Syst. 2018; 162:259–68.
Article
Google Scholar
Foulkes M, Reynolds M. Breeding challenge: improving yield potential. In: Crop Physiology (Second Edition). Elsevier: 2015. p. 397–421. https://doi.org/10.1016/b978-0-12-417104-6.00016-9.
Chapter
Google Scholar
Flohr B, Hunt J, Kirkegaard J, Evans J, Swan A, Rheinheimer B. Genetic gains in nsw wheat cultivars from 1901 to 2014 as revealed from synchronous flowering during the optimum period. Eur J Agron. 2018; 98:1–13.
Article
Google Scholar
Peltonen-Sainio P, Jauhiainen L, Laurila IP. Cereal yield trends in northern european conditions: Changes in yield potential and its realisation. Field Crops Res. 2009; 110(1):85–90.
Article
Google Scholar
Lopes M, Reynolds M, Manes Y, Singh R, Crossa J, Braun H. Genetic yield gains and changes in associated traits of cimmyt spring bread wheat in a "historic" set representing 30 years of breeding. Crop Sci. 2012; 52(3):1123–31.
Article
Google Scholar
François O. Running structure-like population genetic analyses with r. R Tutor Popul Genet U Grenoble-Alpes. 2016:1–9. http://membrestimc.imag.fr/Olivier.Francois/tutoRstructure.pdf. Accessed 13 Sept 2019.
Lo Valvo PJ, Miralles DJ, Serrago RA. Genetic progress in argentine bread wheat varieties released between 1918 and 2011: Changes in physiological and numerical yield components. Field Crops Res. 2018; 221:314–21.
Article
Google Scholar
Alonso M, Mirabella N, Panelo J, Cendoya M, Pontaroli A. Selection for high spike fertility index increases genetic progress in grain yield and stability in bread wheat. Euphytica. 2018; 214(7):112.
Article
CAS
Google Scholar
Abbate P, Andrade F, Lazaro L, Bariffi J, Berardocco H, Inza V, Marturano F. Grain yield increase in recent argentine wheat cultivars. Crop Sci. 1998; 38(5):1203–9.
Article
Google Scholar
Holland J. Genetic architecture of complex traits in plants. Curr Opin Plant Biol. 2007; 10(2):156–61. https://doi.org/10.1016/j.pbi.2007.01.003.
Article
CAS
PubMed
Google Scholar
Huang X, Han B. Natural variations and genome-wide association studies in crop plants. Ann Rev Plant Biol. 2014; 65:531–51.
Article
CAS
Google Scholar
Ganal MW, Altmann T, Röder MS. Snp identification in crop plants. Curr Opin Plant Biol. 2009; 12(2):211–7.
Article
CAS
PubMed
Google Scholar
Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet. 2011; 43(2):159–62. https://doi.org/10.1038/ng.746.
Article
CAS
PubMed
Google Scholar
Hao C, Wang Y, Chao S, Li T, Liu H, Wang L, Zhang X. The iselect 9 k snp analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat. Sci Rep. 2017; 7:41247.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korte A, Farlow A. The advantages and limitations of trait analysis with gwas: a review. Plant Methods. 2013; 9(1):29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qian L, Hickey LT, Stahl A, Werner CR, Hayes B, Snowdon RJ, Voss-Fels KP. Exploring and harnessing haplotype diversity to improve yield stability in crops. Front Plant Sci. 2017; 8:1534.
Article
PubMed
PubMed Central
Google Scholar
Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, Pozniak CJ, Choulet F, Distelfeld A, Poland J, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018; 361(6403):7191.
Article
CAS
Google Scholar
Allen AM, Winfield MO, Burridge AJ, Downie RC, Benbow HR, Barker GL, Wilkinson PA, Coghill J, Waterfall C, Davassi A, et al. Characterization of a wheat breeders’ array suitable for high-throughput snp genotyping of global accessions of hexaploid bread wheat (triticum aestivum). Plant Biotechnol J. 2017; 15(3):390–401.
Article
CAS
PubMed
Google Scholar
Mirabella N, Abbate P, Alonso M, Panelo J, Pontaroli A. Identifying traits at crop maturity and models for estimation of lodging susceptibility in bread wheat. Crop Pasture Sci. 2019; 70(2):95–106.
Article
Google Scholar
Engledow F, Wadham S. Plant characters on yield. J Agric Sci. 1923; 13:390–439.
Article
Google Scholar
Fischer RA. Wheat. potential productivity of field crops under different environments: International Rice Research Institute, Los Baños, Philippines; 1984, pp. 129–54.
Abbate PE, Pontaroli AC, Lázaro L, Gutheim F. A method of screening for spike fertility in wheat. J Agric Sci. 2013; 151(3):322–30.
Article
Google Scholar
González F, Terrile II, Falcón M. Spike fertility and duration of stem elongation as promising traits to improve potential grain number (and yield): variation in modern argentinean wheats. Crop Sci. 2011; 51(4):1693–702.
Article
Google Scholar
Mirabella N, Abbate P, Ramirez I, Pontaroli A. Genetic variation for wheat spike fertility in cultivars and early breeding materials. J Agric Sci. 2016; 154(1):13–22.
Article
Google Scholar
Martino DL, Abbate PE, Cendoya MG, Gutheim F, Mirabella NE, Pontaroli AC. Wheat spike fertility: inheritance and relationship with spike yield components in early generations. Plant Breeding. 2015; 134(3):264–70.
Article
Google Scholar
Fischer R. Wheat physiology: a review of recent developments. Crop Pasture Sci. 2011; 62(2):95–114.
Article
Google Scholar
François O. Running structure-like population genetic analyses with r. R Tutor Popul Genet U Grenoble-Alpes. 2016;:1–9.
Vanzetti LS, Yerkovich N, Chialvo E, Lombardo L, Vaschetto L, Helguera M. Genetic structure of argentinean hexaploid wheat germplasm. Genet Mol Biol. 2013; 36(3):391–9.
Article
PubMed
PubMed Central
Google Scholar
Gomez D, Vanzetti L, Helguera M, Lombardo L, Fraschina J, Miralles DJ. Effect of vrn-1, ppd-1 genes and earliness per se on heading time in argentinean bread wheat cultivars. Field Crops Res. 2014; 158:73–81.
Article
Google Scholar
Mater Y, Baenziger S, Gill K, Graybosch R, Whitcher L, Baker C, Specht J, Dweikat I. Linkage mapping of powdery mildew and greenbug resistance genes on recombinant 1RS from ’Amigo’ and ’Kavkaz’ wheat-rye translocations of chromosome 1RS.1AL,. Genome. 2004; 47(2):292–8. https://doi.org/10.1139/g03-101.
Article
CAS
PubMed
Google Scholar
Graybosch RA. Uneasy unions: Quality effects of rye chromatin transfers to wheat. J Cereal Sci. 2001; 33(1):3–16. https://doi.org/10.1006/jcrs.2000.0336.
Article
CAS
Google Scholar
Singh S, Vikram P, Sehgal D, Burgueño J, Sharma A, Singh SK, Sansaloni CP, Joynson R, Brabbs T, Ortiz C, et al.Harnessing genetic potential of wheat germplasm banks through impact-oriented-prebreeding for future food and nutritional security. Sci Rep. 2018; 8(1):12527.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bevan MW, Uauy C, Wulff BB, Zhou J, Krasileva K, Clark MD. Genomic innovation for crop improvement. Nature. 2017; 543(7645):346.
Article
CAS
PubMed
Google Scholar
Slafer GA, Elia M, Savin R, García GA, Terrile II, Ferrante A, Miralles DJ, González FG. Fruiting efficiency: an alternative trait to further rise wheat yield. Food Energy Secur. 2015; 4(2):92–109.
Article
Google Scholar
Terrile II, Miralles DJ, González FG. Fruiting efficiency in wheat (triticum aestivum l): Trait response to different growing conditions and its relation to spike dry weight at anthesis and grain weight at harvest. Field Crops Res. 2017; 201:86–96.
Article
Google Scholar
Guo Z, Chen D, Alqudah AM, Röder MS, Ganal MW, Schnurbusch T. Genome-wide association analyses of 54 traits identified multiple loci for the determination of floret fertility in wheat. New Phytol. 2017; 214(1):257–70.
Article
CAS
PubMed
Google Scholar
Juliana RP, Singh P, Singh PK, Poland JA, Bergstrom GC, Huerta-Espino J, Bhavani S, Crossa J, Sorrells ME. Genome-wide association mapping for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes. Theor Appl Genet. 2018; 131:1–18.
Article
Google Scholar
Sakuma S, Golan G, Guo Z, Ogawa T, Tagiri A, Sugimoto K, Bernhardt N, Brassac J, Mascher M, Hensel G, et al. Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proc Natl Acad Sci. 2019; 116(11):5182–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Su Z, Hao C, Wang L, Dong Y, Zhang X. Identification and development of a functional marker of tagw2 associated with grain weight in bread wheat (triticum aestivum l.)Theor Appl Genet. 2011; 122(1):211–23.
Article
CAS
PubMed
Google Scholar
Simmonds J, Scott P, Brinton J, Mestre TC, Bush M, Del Blanco A, Dubcovsky J, Uauy C. A splice acceptor site mutation in tagw2-a1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains. Theor Appl Genet. 2016; 129(6):1099–112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma L, Li T, Hao C, Wang Y, Chen X, Zhang X. Ta gs 5-3a, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnol J. 2016; 14(5):1269–80.
Article
CAS
PubMed
Google Scholar
Liu J, Xu Z, Fan X, Zhou Q, Cao J, Wang F, Ji G, Yang L, Feng B, Wang T. A genome-wide association study of wheat spike related traits in china. Front Plant Sci. 2018; 9:1584.
Article
PubMed
PubMed Central
Google Scholar
Beales J, Turner A, Griffiths S, Snape JW, Laurie DA. A pseudo-response regulator is misexpressed in the photoperiod insensitive ppd-d1a mutant of wheat (triticum aestivum l.)Theor Appl Genet. 2007; 115(5):721–33.
Article
CAS
PubMed
Google Scholar
Zikhali M, Wingen LU, Leverington-Waite M, Specel S, Griffiths S. The identification of new candidate genes triticum aestivum flowering locus t3-b1 (taft3-b1) and target of eat1 (tatoe1-b1) controlling the short-day photoperiod response in bread wheat. Plant Cell Environ. 2017; 40(11):2678–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mizuno N, Kinoshita M, Kinoshita S, Nishida H, Fujita M, Kato K, Murai K, Nasuda S. Loss-of-function mutations in three homoeologous phytoclock 1 genes in common wheat are associated with the extra-early flowering phenotype. PLoS ONE. 2016; 11(10):0165618.
Google Scholar
Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J. Allelic variation at the vrn-1 promoter region in polyploid wheat. Theor Appl Genet. 2004; 109(8):1677–86.
Article
CAS
PubMed
Google Scholar
Fu D, Szűcs P, Yan L, Helguera M, Skinner JS, Von Zitzewitz J, Hayes PM, Dubcovsky J. Large deletions within the first intron in vrn-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics. 2005; 273(1):54–65.
Article
CAS
PubMed
Google Scholar
Díaz A, Zikhali M, Turner AS, Isaac P, Laurie DA. Copy number variation affecting the photoperiod-b1 and vernalization-a1 genes is associated with altered flowering time in wheat (triticum aestivum). PLoS ONE. 2012; 7(3):33234.
Article
CAS
Google Scholar
Ellis M, Spielmeyer W, Gale K, Rebetzke G, Richards R. “perfect” markers for the rht-b1b and rht-d1b dwarfing genes in wheat. Theor Appl Genet. 2002; 105(6-7):1038–42.
Article
CAS
PubMed
Google Scholar
Ellis M, Rebetzke G, Azanza F, Richards R, Spielmeyer W. Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet. 2005; 111(3):423–30.
Article
CAS
PubMed
Google Scholar
Mo Y, Vanzetti LS, Hale I, Spagnolo EJ, Guidobaldi F, Al-Oboudi J, Odle N, Pearce S, Helguera M, Dubcovsky J. Identification and characterization of rht25, a locus on chromosome arm 6as affecting wheat plant height, heading time, and spike development. Theor Appl Genet. 2018; 131(10):2021–35.
Article
CAS
PubMed
Google Scholar
Ford BA, Foo E, Sharwood R, Karafiatova M, Vrána J, MacMillan C, Nichols DS, Steuernagel B, Uauy C, Doležel J, et al.Rht18 semidwarfism in wheat is due to increased ga 2-oxidasea9 expression and reduced ga content. Plant Physiol. 2018; 177(1):168–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Smith KP, Combs E, Blake T, Horsley RD, Muehlbauer GJ. Effect of population size and unbalanced data sets on qtl detection using genome-wide association mapping in barley breeding germplasm. Theor Appl Genet. 2012; 124(1):111–24.
Article
CAS
PubMed
Google Scholar
Zikhali M, Wingen LU, Griffiths S. Delimitation of the earliness per se d1 (eps-d1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (triticum aestivum). J Exp Bot. 2015; 67(1):287–99.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schachermayr G, Feuillet C, Keller B. Molecular markers for the detection of the wheat leaf rust resistance gene lr10 in diverse genetic backgrounds. Mol Breed. 1997; 3(1):65–74.
Article
CAS
Google Scholar
Lagudah E, McFadden H, Singh R, Huerta-Espino J, Bariana H, Spielmeyer W. Molecular genetic characterization of the lr34/yr18 slow rusting resistance gene region in wheat. Theor Appl Genet. 2006; 114(1):21–30.
Article
CAS
PubMed
Google Scholar
Schachermayr G, Messmer M, Feuillet C, Winzeler H, Winzeler M, Keller B. Identification of molecular markers linked to the agropyron elongatum-derived leaf rust resistance gene lr24 in wheat. Theor Appl Genet. 1995; 90(7-8):982–90.
Article
CAS
PubMed
Google Scholar
He X, He Z, Zhang L, Sun D, Morris C, Fuerst E, Xia X. Allelic variation of polyphenol oxidase (ppo) genes located on chromosomes 2a and 2d and development of functional markers for the ppo genes in common wheat. Theor Appl Genet. 2007; 115(1):47–58.
Article
CAS
PubMed
Google Scholar
Himi E, Maekawa M, Miura H, Noda K. Development of pcr markers for tamyb10 related to r-1, red grain color gene in wheat. Theor Appl Genet. 2011; 122(8):1561–76.
Article
CAS
PubMed
Google Scholar
Butow B, Gale K, Ikea J, Juhasz A, Bedö Z, Tamas L, Gianibelli M. Dissemination of the highly expressed bx7 glutenin subunit (glu-b1al allele) in wheat as revealed by novel pcr markers and rp-hplc. Theor Appl Genet. 2004; 109(7):1525–35.
Article
CAS
PubMed
Google Scholar
Vanzetti LS, Pflüger LA, Rodríguez-Quijano M, Carrillo JM, Helguera M. Genetic variability for waxy genes in argentinean bread wheat germplasm. Electron J Biotechnol. 2009; 12(1):4–5.
Article
CAS
Google Scholar
Yang Y, Zhao X, Xia L, Chen X, Xia X, Yu Z, He Z, Röder M. Development and validation of a viviparous-1 sts marker for pre-harvest sprouting tolerance in chinese wheats. Theor Appl Genet. 2007; 115(7):971–80.
Article
CAS
PubMed
Google Scholar
Zhang W, Gianibelli M, Rampling L, Gale K. Characterisation and marker development for low molecular weight glutenin genes from glu-a3 alleles of bread wheat (triticum aestivum. l). Theor Appl Genet. 2004; 108(7):1409–19.
Article
CAS
PubMed
Google Scholar
Gautier M-F, Aleman M-E, Guirao A, Marion D, Joudrier P. Triticum aestivum puroindolines, two basic cystine-rich seed proteins: cdna sequence analysis and developmental gene expression. Plant Mol Biol. 1994; 25(1):43–57.
Article
CAS
PubMed
Google Scholar
Pflüger L, D’Ovidio R, Margiotta B, Pena R, Mujeeb-Kazi A, Lafiandra D. Characterisation of high-and low-molecular weight glutenin subunits associated to the d genome of aegilops tauschii in a collection of synthetic hexaploid wheats. Theor Appl Genet. 2001; 103(8):1293–301.
Article
Google Scholar
Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of ld and haplotype maps. Bioinformatics. 2004; 21(2):263–5.
Article
PubMed
CAS
Google Scholar
Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z. Gapit: genome association and prediction integrated tool. Bioinformatics. 2012; 28(18):2397–9.
Article
CAS
PubMed
Google Scholar
Zadoks JC, Chang TT, Konzak CF. A decimal code for the growth stages of cereals. Weed Res. 1974; 14(6):415–21.
Article
Google Scholar
Crescente JM, Guidobaldi F, Demichelis M, Formica MB, Helguera M, Vanzetti LS. Phenobook: an open source software for phenotypic data collection. GigaScience. 2017; 6(4):1–5.
Article
PubMed
PubMed Central
Google Scholar
Wang Q, Tian F, Pan Y, Buckler ES, Zhang Z. A super powerful method for genome wide association study. PLoS ONE. 2014; 9(9):107684.
Article
CAS
Google Scholar
Zhang J, Gizaw SA, Bossolini E, Hegarty J, Howell T, Carter AH, Akhunov E, Dubcovsky J. Identification and validation of qtl for grain yield and plant water status under contrasting water treatments in fall-sown spring wheats. Theor Appl Genet. 2018; 131:1–19.
Article
CAS
Google Scholar