Jin J, Tian F, Yang D, Meng Y, Kong L, Luo J, et al. Planttfdb 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 2017;45:D1040–5.
Article
CAS
Google Scholar
Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 2000;290:2105–10.
Article
CAS
Google Scholar
Li S, Xie Z, Hu C, Zhang J. A review of auxin response factors (arfs) in plants. Front Plant Sci. 2016;7:47.
PubMed
PubMed Central
Google Scholar
Wang P, Cheng T, Lu M, Liu G, Li M, Shi J, et al. Expansion and functional divergence of ap2 group genes in spermatophytes determined by molecular evolution and arabidopsis mutant analysis. Front Plant Sci. 2016;7:1383.
PubMed
PubMed Central
Google Scholar
Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta. 2012;1819:97–103.
Article
CAS
Google Scholar
Moreno MA, Harper LC, Krueger RW, Dellaporta SL, Freeling M. Liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Genes Dev. 1997;11:616.
Article
CAS
Google Scholar
Chen X, Zhang Z, Liu D, Zhang K, Li A, Mao L. Squamosa promoter-binding protein-like transcription factors: star players for plant growth and development. J Integr Plant Biol. 2010;52:946–51.
Article
CAS
Google Scholar
Guo A, Zhu Q, Gu X, Ge S, Yang J, Luo J. Genome-wide identification and evolutionary analysis of the plant specific sbp-box transcription factor family. Gene. 2008;418:1–8.
Article
CAS
Google Scholar
Stief A, Altmann S, Hoffmann K, Pant BD, Scheible WR, Baurle I. Arabidopsis mir156 regulates tolerance to recurring environmental stress through spl transcription factors. Plant Cell. 2014;26:1792–807.
Article
CAS
Google Scholar
Hou H, Jia H, Yan Q, Wang X. Overexpression of a sbp-box gene (vpsbp16) from chinese wild vitis species in arabidopsis improves salinity and drought stress tolerance. Int J Mol Sci. 2018;19:940.
Article
Google Scholar
Cui L, Shan J, Shi M, Gao J, Lin H. The mir156-spl9-dfr pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J. 2014;80:1108–17.
Article
CAS
Google Scholar
Li C, Lu S. Molecular characterization of the spl gene family in populus trichocarpa. BMC Plant Biol. 2014;14:131.
Article
Google Scholar
Wang P, Chen D, Zheng Y, Jin S, Yang J, Ye N. Identification and expression analyses of sbp-box genes reveal their involvement in abiotic stress and hormone response in tea plant (camellia sinensis). Int J Mol Sci. 2018;19:3404.
Article
Google Scholar
Mao H, Yu L, Li Z, Yan Y, Han R, Liu H, et al. Genome-wide analysis of the spl family transcription factors and their responses to abiotic stresses in maize. Plant Gene. 2016;6:1–12.
Article
CAS
Google Scholar
Ning K, Chen S, Huang H, Jiang J, Yuan H, Li H. Molecular characterization and expression analysis of the spl gene family with bpspl9 transgenic lines found to confer tolerance to abiotic stress in betula platyphylla suk. Plant Cell Tissue Organ Cult. 2017;130:469–81.
Article
CAS
Google Scholar
Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. Prediction of plant microrna targets. Cell. 2002;110:513–20.
Article
CAS
Google Scholar
Yu Y, Jia T, Chen X. The ‘how’ and ‘where’ of plant micrornas. New Phytol. 2017;216:1002–17.
Article
CAS
Google Scholar
Arshad M, Feyissa BA, Amyot L, Aung B, Hannoufa A. Microrna156 improves drought stress tolerance in alfalfa (medicago sativa) by silencing SPL13. Plant Sci. 2017;258:122–36.
Article
CAS
Google Scholar
Aung B, Gruber MY, Hannoufa A. The microrna156 system: a tool in plant biotechnology. Biocatal Agric Biotechnol. 2015;4:432–42.
Article
Google Scholar
Wang H, Wang H. The mir156/spl module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits. Mol Plant. 2015;8:677–88.
Article
CAS
Google Scholar
Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, et al. The osspl16—gw7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet. 2015;47:949.
Article
CAS
Google Scholar
Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, et al. Osspl14 promotes panicle branching and higher grain productivity in rice. Nat Genet. 2010;42:545–9.
Article
CAS
Google Scholar
Gou J, Debnath S, Sun L, Flanagan A, Tang Y, Jiang Q, et al. From model to crop: functional characterization of SPL8 in M. truncatula led to genetic improvement of biomass yield and abiotic stress tolerance in alfalfa. Plant Biotechnol J. 2018;16:951–62.
Article
CAS
Google Scholar
Zhang L, Li G, Dong G, Wang M, Di D, Kronzucker HJ, et al. Characterization and comparison of nitrate fluxes in Tamarix ramosissima and cotton roots under simulated drought conditions. Tree Physiol. 2019;39:628–40.
Article
Google Scholar
Ding F, Yang J, Yuan F, Wang B. Progress in mechanism of salt excretion in recretohalopytes. Front Biol. 2010;5:164–70.
Article
Google Scholar
Ji X, Nie X, Liu Y, Zheng L, Zhao H, Zhang B, et al. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation. Tree Physiol. 2016;36:193–207.
CAS
PubMed
Google Scholar
Zheng L, Liu G, Meng X, Liu Y, Ji X, Li Y, et al. A WRKY gene from Tamarix hispida, thwrky4, mediates abiotic stress responses by modulating reactive oxygen species and expression of stress-responsive genes. Plant Mol Biol. 2013;82:303–20.
Article
CAS
Google Scholar
Wang L, Li Z, Lu M, Wang Y. Thnac13, a nac transcription factor from tamarix hispida, confers salt and osmotic stress tolerance to transgenic tamarix and arabidopsis. Front Plant Sci. 2017;8:635.
Article
Google Scholar
Ji X, Wang Y, Liu G. Expression analysis of myc genes from tamarix hispida in response to different abiotic stresses. Int J Mol Sci. 2012;13:1300–13.
Article
CAS
Google Scholar
Wang L, Qin L, Liu W, Zhang D, Wang Y. A novel ethylene-responsive factor from tamarix hispida, therf1, is a gcc-box- and dre-motif binding protein that negatively modulates abiotic stress tolerance in arabidopsis. Physiol Plant. 2014;152:84–97.
Article
CAS
Google Scholar
Zang D, Wang C, Ji X, Wang Y. Tamarix hispida zinc finger protein thzfp1 participates in salt and osmotic stress tolerance by increasing proline content and sod and pod activities. Plant Sci. 2015;235:111–21.
Article
CAS
Google Scholar
Wang J, Xu M, Gu Y, Xu L. Differentially expressed gene analysis of tamarix chinensis provides insights into nacl-stress response. Trees. 2017;31:645–58.
Article
CAS
Google Scholar
Gandikota M, Birkenbihl RP, Höhmann S, Cardon GH, Saedler H, Huijser P. The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J. 2007;49:683–93.
Article
CAS
Google Scholar
Riese M. Strukturelle und funktionelle untersuchungen der SBP-box gene in Physcomitrella patens; 2006.
Google Scholar
Silva GFFE, Silva EM, Azevedo MDS, Guivin MAC, Ramiro DA, Figueiredo CR, et al. Microrna156-targeted spl/sbp box transcription factors regulate tomato ovary and fruit development. Plant J. 2014;78:604–18.
Article
Google Scholar
Yang Z, Wang X, Gu S, Hu Z, Xu H, Xu C. Comparative study of sbp-box gene family in arabidopsis and rice. Gene. 2008;407:1–11.
Article
CAS
Google Scholar
Chen G, Li J, Liu Y, Zhang Q, Gao Y, Fang K, et al. Roles of the ga-mediated spl gene family and mir156 in the floral development of chinese chestnut ( castanea mollissima ). Int J Mol Sci. 2019;20:1577.
Article
Google Scholar
Zhang W, Abdelrahman M, Jiu S, Guan L, Han J, Zheng T, et al. Vvmir160s/vvarfs interaction and their spatio-temporal expression/cleavage products during ga-induced grape parthenocarpy. BMC Plant Biol. 2019;19(1):111.
Article
Google Scholar
Cardon GH, Höhmann S, Nettesheim K, Saedler H, Huijser P. Functional analysis of the arabidopsis thaliana sbp-box gene spl3: a novel gene involved in the floral transition. Plant J. 2010;12:367–77.
Article
Google Scholar
Wang JW, Czech B, Weigel D. Mir156-regulated spl transcription factors define an endogenous flowering pathway in arabidopsis thaliana. Cell. 2009;138:738–49.
Article
CAS
Google Scholar
Wang H, Zhang W, Wang M, Cheng Q. Cloning and characterization of the PtVIP1 gene in Populus; 2018. https://doi.org/10.1007/s11676-018-0745-z.
Book
Google Scholar
Wang H, Wang M, Cheng Q. Capturing the alternative cleavage and polyadenylation sites of 14 nac genes in populus using a combination of 3′-race and high-throughput sequencing. Molecules. 2018;23:608.
Article
Google Scholar
Cheng T, Shi J, Dong Y, Ma Y, Peng Y, Hu X, et al. Hydrogen sulfide enhances poplar tolerance to high-temperature stress by increasing s-nitrosoglutathione reductase (GSNOR) activity and reducing reactive oxygen/nitrogen damage. Plant Growth Regul. 2017;84:1–13.
Google Scholar
Kumar S, Stecher G, Tamura K. Mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870.
Article
CAS
Google Scholar
Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ. Multiple sequence alignment with clustal x. Trends Biochem Sci. 1998;23:403–5.
Article
CAS
Google Scholar
Chen C. Real-time quantification of micrornas by stem-loop rt-pcr. Nucleic Acids Res. 2005;33:e179.
Article
Google Scholar