Darwin C. The different forms of flowers on plants of the same species. London: John Murray; 1877.
Book
Google Scholar
Rivkin LR, Case AL, Caruso CM. Why is gynodioecy a rare but widely distributed sexual system? Lessons from the Lamiaceae. New Phytol. 2016;211(2):688–96.
Article
PubMed
Google Scholar
Dufay M, Champelovier P, Kafer J, Henry J-P, Mousset S, Marais GAB. An angiosperm-wide analysis of the gynodioecy-dioecy pathway. Ann Bot. 2014;114(3):539–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caruso CM, Eisen K, Case AL, Mazer SJ. An angiosperm-wide analysis of the correlates of gynodioecy. Int J Plant Sci. 2016;177(2):115–21.
Article
Google Scholar
Dufay M, Billard E. How much better are females? The occurrence of female advantage, its proximal causes and its variation within and among gynodioecious species. Ann Bot. 2012;109(3):505–19.
Article
PubMed
Google Scholar
Ashman TL, Williams CF. Constraints on the evolution of males and sexual dimorphism: field estimates of genetic architecture of reproductive traits in three populations of gynodioecious Fragaria virginiana. Evolution. 2003;57(9):2012–25.
Article
PubMed
Google Scholar
Mutikainen P, Delph LF. Inbreeding depression in gynodioecious Lobelia siphilitica: among-family differences override between-morph differences. Evolution. 1998;52(6):1572–82.
PubMed
Google Scholar
Weller SG, Sakai AK. Selfing and resource allocation in Schiedea salicaria (Caryophyllaceae), a gynodioecious species. J Evol Biol. 2005;18(2):301–8.
Article
CAS
PubMed
Google Scholar
Kubota S, Ohara M. Discovery of male sterile plants and their contrasting occurrence between self-compatible and self-incompatible populations of the hermaphroditic perennial Trillium camschatcense. Plant Species Biol. 2009;24(3):169–78.
Article
Google Scholar
Collin C, Pennings P, Rueffler C, Widmer A, Shykoff J. Natural enemies and sex: how seed predators and pathogens contribute to sex-differential reproductive success in a gynodioecious plant. Oecologia. 2002;131(1):94–102.
Article
CAS
PubMed
Google Scholar
Marshall M, Ganders FR. Sex-biased seed predation and the maintenance of females in a gynodioecious plant. Am J Bot. 2001;88(8):1437–43.
Article
CAS
PubMed
Google Scholar
Zhang YW, Yang CF, Zhao JM, Guo YH. Selective nectar robbing in a gynodioecious plant (Glechoma longituba) enhances female advantage. J Evol Biol. 2009;22(3):527–35.
Article
PubMed
Google Scholar
Delph LF, Lively CM. Pollinator visitation, floral display, and nectar production of the sexual morphs of a gynodioecious shrub. Oikos. 1992;63(2):161–70.
Article
Google Scholar
Williams CF, Kuchenreuther MA, Drew A. Floral dimorphism, pollination, and self-fertilization in gynodioecious Geranium richardsonii (Geraniaceae). Am J Bot. 2000;87(5):661–9.
Article
CAS
PubMed
Google Scholar
Ashman TL, Stanton M. Seasonal variation in pollination dynamics of sexually dimorphic Sidalcea oregana ssp. spicata (Malvaceae). Ecology. 1991;72(3):993–1003.
Article
Google Scholar
Stevens DP. On the gynodioecious polymorphism in Saxifraga granulata L.(Saxifragaceae). Biol J Linn Soc. 1988;35(1):15–28.
Article
Google Scholar
Jordano P. Pollination biology of Prunus mahaleb L.: deferred consequences of gender variation for fecundity and seed size. Biol J Linn Soc. 1993;50(1):65–84.
Article
Google Scholar
Shykoff JA, Kolokotronis SO, Collin CL, Lopez-Villavicencio M. Effects of male sterility on reproductive traits in gynodioecious plants: a meta-analysis. Oecologia. 2003;135(1):1–9.
Article
PubMed
Google Scholar
Arnan X, Escola A, Rodrigo A, Bosch J. Female reproductive success in gynodioecious Thymus vulgaris: pollen versus nutrient limitation and pollinator foraging behaviour. Bot J Linn Soc. 2014;175(3):395–408.
Article
Google Scholar
Herrera CM, Castellanos MC, Medrano M. Geographical context of floral evolution: towards an improved research programme in floral diversification. In: Harder LD, Barrett SCH, editors. Ecology and evolution of flowers. New York: Oxford University Press; 2006. p. 278–94.
Google Scholar
Sletvold N, Agren J. There is more to pollinator-mediated selection than pollen limitation. Evolution. 2014;68(7):1907–18.
Article
PubMed
Google Scholar
Ferdy JB, Gouyon PH, Moret J, Godelle B. Pollinator behavior and deceptive pollination: learning process and floral evolution. Am Nat. 1998;152(5):696–705.
Article
CAS
PubMed
Google Scholar
Eckhart VM. Sexual dimorphism in flowers and inflorescences. In: Geber MA, Dawson TE, Delph LF, editors. Gender and sexual dimorphism in flowering plants. Berlin Heidelberg: Springer; 1999. p. 123–48.
Chapter
Google Scholar
Delph LF, Galloway LF, Stanton ML. Sexual dimorphism in flower size. Am Nat. 1996;148(2):299–320.
Article
Google Scholar
Asikainen E, Mutikainen P. Preferences of pollinators and herbivores in Gynodioecious Geranium sylvaticum. Ann Bot. 2005;95(5):879–86.
Article
PubMed
PubMed Central
Google Scholar
Ashman TL. Pollinator selectivity and its implications for the evolution of dioecy and sexual dimorphism. Ecology. 2000;81(9):2577–91.
Article
Google Scholar
Morgan MT. Attractive structures and the stability of hermaphroditic sex expression in flowering plants. Evolution. 1992;46(4):1199–213.
Article
PubMed
Google Scholar
Van Treuren R, Bijlsma R, Ouborg NJ, Van Delden W. The effects of population size and plant density on outcrossing rates in locally endangered Salvia pratensis. Evolution. 1993;47(4):1094–104.
Article
PubMed
Google Scholar
Claßen-Bockhoff R, Speck T, Tweraser E, Wester P, Thimm S, Reith M. The staminal lever mechanism in Salvia L. (Lamiaceae): a key innovation for adaptive radiation? Organ Divers Evol. 2004;4(3):189–205.
Article
Google Scholar
Reith M, Baumann G, Claßen-Bockhoff R, Speck T. New insights into the functional morphology of the lever mechanism of Salvia pratensis (Lamiaceae). Ann Bot. 2007;100(2):393–400.
Article
PubMed
PubMed Central
Google Scholar
Claßen-Bockhoff R, Wester P, Tweraser E. The staminal lever mechanism in Salvia L. (Lamiaceae): a review. Plant Biology (Stuttgart). 2003;5(1):33–41.
Article
Google Scholar
Zhang B, Li QJ. Phenotypic selection on the staminal lever mechanism in Salvia digitaloides (Labiaceae). Evol Ecol. 2014;28(2):373–86.
Article
Google Scholar
Thompson JD, Rolland AG, Prugnolle F. Genetic variation for sexual dimorphism in flower size within and between populations of gynodioecious Thymus vulgaris. J Evol Biol. 2002;15(3):362–72.
Article
Google Scholar
Eckhart VM. Resource compensation and the evolution of gynodioecy in Phacelia linearis (Hydrophyllaceae). Evolution. 1992;46(5):1313–28.
Article
PubMed
Google Scholar
Eckhart VM. Do hermaphrodites of gynodioecious Phacelia linearis (Hydrophyllaceae) trade off seed production to attract pollinators? Biol J Linn Soc. 1993;50(1):47–63.
Article
Google Scholar
Conner JK, Rush S. Effects of flower size and number on pollinator visitation to wild radish, Raphanus raphanistrum. Oecologia. 1996;105(4):509–16.
Article
PubMed
Google Scholar
Campbell DR. Comparing pollen dispersal and gene flow in a natural population. Evolution. 1991;45(8):1965–8.
Article
PubMed
Google Scholar
Delph LF, Knapczyk FN, Taylor DR. Among-population variation and correlations in sexually dimorphic traits of Silene latifolia. J Evol Biol. 2002;15(6):1011–20.
Article
Google Scholar
Golonka AM, Sakai AK, Weller SG. Wind pollination, sexual dimorphism, and changes in floral traits of Schiedea (Caryophyllaceae). Am J Bot. 2005;92(9):1492–502.
Article
PubMed
Google Scholar
Barrett SCH, Hough J. Sexual dimorphism in flowering plants. J Exp Bot. 2013;64(1):67–82.
Article
CAS
PubMed
Google Scholar
Asikainen E, Mutikainen P. Pollen and resource limitation in a gynodioecious species. Am J Bot. 2005;92(3):487–94.
Article
PubMed
Google Scholar
Zhang B, Claßen-Bockhoff R, Zhang ZQ, Sun S, Luo YJ, Li QJ. Functional implications of the staminal lever mechanism in Salvia cyclostegia (Lamiaceae). Ann Bot. 2011;107(4):621–8.
Article
PubMed
PubMed Central
Google Scholar
Robertson AW. The relationship between floral display size, pollen carryover and geitonogamy in Myosotis colensoi (Kirk) Macbride (Boraginaceae). Biol J Linn Soc. 1992;46(4):333–49.
Article
Google Scholar
McCauley DE. The genetic structure of a gynodioecious plant: nuclear and cytoplasmic genes. Evolution. 1998;52(1):255–60.
Article
PubMed
Google Scholar
Klaas AL, Olson MS. Spatial distributions of cytoplasmic types and sex expression in Alaskan populations of Silene acaulis. Int J Plant Sci. 2006;167(2):179–89.
Article
CAS
Google Scholar
De Cauwer I, Arnaud JF, Courseaux A, Dufay M. Sex-specific fitness variation in gynodioecious Beta vulgaris ssp. maritima: do empirical observations fit theoretical predictions? J Evol Biol. 2011;24(11):2456–72.
Article
PubMed
Google Scholar
Alonso C, Herrera CM. Neither vegetative nor reproductive advantages account for high frequency of male-steriles in southern Spanish gynodioecious Daphne laureola (Thymelaeaceae). Am J Bot. 2001;88(6):1016–24.
Article
CAS
PubMed
Google Scholar
Murayama K, Yahara T, Terachi T. Variation of female frequency and cytoplasmic male-sterility gene frequency among natural gynodioecious populations of wild radish (Raphanus sativus L.). Mol Ecol. 2004;13(8):2459–64.
Article
CAS
PubMed
Google Scholar
Delph LF, Touzet P, Bailey MF. Merging theory and mechanism in studies of gynodioecy. Trends Ecol Evol. 2007;22(1):17–24.
Article
PubMed
Google Scholar
Bailey MF, Delph LF, Lively CM. Modeling gynodioecy: novel scenarios for maintaining polymorphism. Am Nat. 2003;161(5):762–76.
Article
PubMed
Google Scholar
Gouyon PH, Vichot F, Van Damme JMM. Nuclear-cytoplasmic male sterility: single-point equilibria versus limit cycles. Am Nat. 1991;137(4):498–514.
Article
Google Scholar
Lande R. Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution. 1980;34(2):292–305.
Article
PubMed
Google Scholar
Toland Ø. Environment-dependent pollen limitation and selection on floral traits in an alpine species. Ecology. 2001;82(8):2233–44.
Article
Google Scholar
Benitez-Vieyra S, Glinos E, Medina AM, Cocucci AA. Temporal variation in the selection on floral traits in Cyclopogon elatus (Orchidaceae). Evol Ecol. 2012;26(6):1451–68.
Article
Google Scholar
Arnold SJ, Wade MJ. On the measurement of natural and sexual selection: theory. Evolution. 1984;38(4):709–19.
Article
PubMed
Google Scholar
Arnold SJ, Wade MJ. On the measurement of natural and sexual selection: applications. Evolution. 1984;38(4):720–34.
Article
PubMed
Google Scholar
Lande R, Arnold SJ. The measurement of selection on correlated characters. Evolution. 1983;37(6):1210–26.
Article
PubMed
Google Scholar
Harder LD, Johnson SD. Darwin's beautiful contrivances: evolutionary and functional evidence for floral adaptation. New Phytol. 2009;183(3):530–45.
Article
PubMed
Google Scholar
Conner JK, Hartl DL. A primer of ecological genetics. Massachusetts, USA: Sinauer Associates; 2004.
Google Scholar
Rausher MD. The measurement of selection on quantitative traits: biases due to environmental covariances between traits and fitness. Evolution. 1992;46(3):616–26.
Article
PubMed
Google Scholar
Cook RD, Weisberg S. Applied regression including computing and graphics. New York: Wiley; 1999.
Book
Google Scholar
R Development Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018.
Google Scholar