Wahl TI, Desmond O'Rourke A. The economics of sprout damage in wheat. Agribusiness. 1994;10(1):27–41.
Article
Google Scholar
Yang Y, Zhao X, Xia L, Chen X, Xia X, Yu Z, He Z, Roder M. Development and validation of a Viviparous-1 STS marker for pre-harvest sprouting tolerance in Chinese wheats. Theor Appl Genet. 2007;115(7):971–80.
Article
CAS
PubMed
Google Scholar
Biddulph T, Plummer J, Setter T, Mares D. Seasonal conditions influence dormancy and preharvest sprouting tolerance of wheat (Triticum aestivum L.) in the field. Field Crop Res. 2008;107(2):116–28.
Article
Google Scholar
Biddulph T. Mechanisms of dormancy, preharvest sprouting tolerance and how they are influenced by the environment during grain filling and maturation in wheat (Triticum aestivum L.). Perth: The University of Western Australia; 2006. https://research-repository.uwa.edu.au/en/publications/mechanisms-of-dormancy-preharvest-sprouting-tolerance-and-how-the. PhD thesis
Google Scholar
Darabi H, Mohandessi S, Balavar Y, Moghaddam M, Aghapoor K, Mohsenzadeh F, Nourinia A. Clove bud oil: an efficient, economical and widely available oil for the inhibition of wheat seed germination. Environ Chem Lett. 2011;9(4):519–24.
Article
CAS
Google Scholar
Derera N, Bhatt G, McMaster G. On the problem of pre-harvest sprouting of wheat. Euphytica. 1977;26:299–308.
Article
CAS
Google Scholar
Torada A, Koike M, Ikeguchi S, Tsutsui I. Mapping of a major locus controlling seed dormancy using backcrossed progenies in wheat (Triticum aestivum L.). Genome. 2008;51(6):426–32.
Article
CAS
PubMed
Google Scholar
Barrero JM, Cavanagh C, Verbyla KL, Tibbits JF, Verbyla AP, Huang BE, Rosewarne GM, Stephen S, Wang P, Whan A, et al. Transcriptomic analysis of wheat near-isogenic lines identifies PM19-A1 and A2 as candidates for a major dormancy QTL. Genome Biol. 2015;16:93.
Article
PubMed
PubMed Central
Google Scholar
Tuttle KM, Martinez SA, Schramm EC, Takebayashi Y, Seo M, Steber CM. Grain dormancy loss is associated with changes in ABA and GA sensitivity and hormone accumulation in bread wheat, Triticum aestivum (L.). Seed Sci Res. 2015;25(2):179–93.
Article
CAS
Google Scholar
Salmon D, Helm J, Duggan T, Lakeman D. The influence of chaff extracts on the germination of spring triticale. Agron J. 1986;78(5):863–7.
Article
Google Scholar
Gale M. The genetics of preharvest sprouting in cereals, particularly in wheat. In: Derera NF, editor. Preharvest field sprouting in cereals. Boca Raton: CRC Press; 1989.
Google Scholar
King R. Water uptake in relation to pre-harvest sprouting damage in wheat: grain characteristics. Aust J Agric Res. 1984;35(3):337–45.
Article
Google Scholar
Paterson AH, Sorrells ME, Obendorf RL. Methods of evaluation for preharvest sprouting resistance in wheat breeding programs. Can J Plant Sci. 1989;69(3):681–9.
Article
Google Scholar
Anderson J, Sorrells M, Tanksley S. RFLP analysis of genomic regions associated with resistance to pre-harvest sprouting in wheat. Crop Sci. 1993;33:453–9.
Article
CAS
Google Scholar
Mares D, Mrva K. Mapping quantitative trait loci associated with variation in dormancy in Australian wheat. Aust J Agric Res. 2001;52:1257–65.
Article
CAS
Google Scholar
Mares D, Mrva K, Tan M, Sharp P. Dormancy in white-grained wheat progress towards identification of genes and molecular markers. Euphytica. 2002;126:47–53.
Article
CAS
Google Scholar
Kato K, Nakamura W, Tabiki T, Miura H, Sawada S. Detection of loci controlling seed dormancy on group 4 chromosomes of wheat and comparative mapping with rice and barley genomes. Theor Appl Genet. 2001;102(6):980–5.
Article
CAS
Google Scholar
Lohwasser U, Röder MS, Börner A. QTL mapping of the domestication traits pre-harvest sprouting and dormancy in wheat (Triticum aestivum L.). Euphytica. 2005;143(3):247–9.
Article
CAS
Google Scholar
Mori M, Uchino N, Chono M, Kato K, Miura H. Mapping QTLs for grain dormancy on wheat chromosome 3A and the group 4 chromosomes, and their combined effect. Theor Appl Genet. 2005;110(7):1315–23.
Article
CAS
PubMed
Google Scholar
Chen C, Cai S, Bai G. A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Mol Breed. 2008;21(3):351–8.
Article
CAS
Google Scholar
Imtiaz M, Ogbonnaya F, Oman J, Ginkel M. Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines. Genetics. 2008;178(3):1725–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X-Q, Li C, Tay A, Lance R, Mares D, Cheong J, Cakir M, Ma J, Appels R. A new PCR-based marker on chromosome 4AL for resistance to pre-harvest sprouting in wheat (Triticum aestivum L.). Mol Breed. 2008;22(2):227–36.
Article
CAS
Google Scholar
Cabral A, Jordan M, McCartney C, You F, Humphreys D, MacLachlan R, Pozniak C. Identification of candidate genes, regions and markers for pre-harvest sprouting resistance in wheat. BMC Plant Biol. 2014;14:340–51.
Article
PubMed
PubMed Central
Google Scholar
Albrecht T, Oberforster M, Kempf H, Ramgraber L, Schacht J, Kazman E, Zechner E, Neumayer A, Hartl L, Mohler V. Genome-wide association mapping of preharvest sprouting resistance in a diversity panel of European winter wheats. J Appl Genet. 2015;56(3):277–85.
Article
CAS
PubMed
Google Scholar
Kumar S, Knox R, Clarke F, Pozniak C, DePauw R, Cuthbert R, Fox S. Maximizing the identification of QTL for pre-harvest sprouting resistance using seed dormancy measures in a white-grained hexaploid wheat population. Euphytica. 2015;205(1):287–309.
Article
Google Scholar
Lin M, Cai S, Wang S, Liu S, Zhang G, Bai G. Genotyping-by-sequencing (GBS) identified SNP tightly linked to QTL for pre-harvest sprouting resistance. Theor Appl Genet. 2015;128(7):1385–95.
Article
CAS
PubMed
Google Scholar
Torada A, Koike M, Ogawa T, Takenouchi Y, Tadamura K, Wu J, Matsumoto T, Kawaura K, Ogihara Y. A causal gene for seed dormancy on wheat chromosome 4A encodes a MAP kinase kinase. Curr Biol. 2016;26(6):782–7.
Article
CAS
PubMed
Google Scholar
Zhai H, Feng Z, Li J, Liu X, Xiao S, Ni Z, Sun Q. QTL analysis of spike morphological traits and plant height in winter wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map. Front Plant Sci. 2016;7:1617.
PubMed
PubMed Central
Google Scholar
Youssefian S, Kirby EJM, Gale MD. Pleiotropic effects of the GA-insensitive Rht dwarfing genes in wheat. 2. Effects on leaf, stem, ear and floret growth. Field Crop Res. 1992;28(3):191–210.
Article
Google Scholar
Patil RM, Tamhankar SA, Oak MD, Raut AL, Honrao BK, Rao VS, Misra SC. Mapping of QTL for agronomic traits and kernel characters in durum wheat (Triticum durum Desf.). Euphytica. 2013;190(1):117–29.
Article
Google Scholar
Marza F, Bai GH, Carver BF, Zhou WC. Quantitative trait loci for yield and related traits in the wheat population Ning7840× Clark. Theor Appl Genet. 2006;112(4):688–98.
Article
CAS
PubMed
Google Scholar
Guan P, Lu L, Jia L, Kabir MR, Zhang J, Zhao Y, Xin M, Hu Z, Yao Y, Ni Z. Global QTL analysis identifies genomic regions on chromosomes 4A and 4B harboring stable loci for yield-related traits across different environments in wheat (Triticum aestivum L.). Front Plant Sci. 2018;9:529.
Article
PubMed
PubMed Central
Google Scholar
Zhang H, Chen J, Li R, Deng Z, Zhang K, Liu B, Tian J. Conditional QTL mapping of three yield components in common wheat (Triticum aestivum L.). Crop J. 2016;4(3):220–8.
Article
Google Scholar
Dan C, Wu X-Y, Kuo WU, Zhang J-P, Liu W-H, Yang X-M, Li X-Q, Lu Y-Q, Li L-H. Novel and favorable genomic regions for spike related traits in a wheat germplasm Pubing 3504 with high grain number per spike under varying environments. J Integr Agric. 2017;16(11):2386–401.
Article
Google Scholar
Wang J, Liu W, Wang H, Li L, Wu J, Yang X, Li X, Gao A. QTL mapping of yield-related traits in the wheat germplasm 3228. Euphytica. 2011;177(2):277–92.
Article
Google Scholar
Somyong S, Ishikawa G, Munkvold J, Tanaka J, Benscher D, Cho Y, Sorrells M. Fine mapping of a preharvest sprouting QTL interval on chromosome 2B in white wheat. Theor Appl Genet. 2014;127(8):1843–55.
Article
PubMed
Google Scholar
Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J. 2014;12(6):787–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kotak S, Vierling E, Bäumlein H, von Koskull-Döring P. A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell. 2007;19(1):182–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Almoguera C, Rojas A, Dıaz-Martın J, Prieto-Dapena P, Carranco R, Jordano J. A seed-specific heat-shock transcription factor involved in developmental regulation during embryogenesis in sunflower. J Biol Chem. 2002;277(46):43866–72.
Article
CAS
PubMed
Google Scholar
Tejedor-Cano J, Prieto-Dapena P, Almoguera C, Carranco R, Hiratsu K, Ohme-Takagi M, Jordano J. Loss of function of the HSFA9 seed longevity program. Plant Cell Environ. 2010;33(8):1408–17.
CAS
PubMed
Google Scholar
Macovei A, Vaid N, Tula S, Tuteja N. A new DEAD-box helicase ATP-binding protein (OsABP) from rice is responsive to abiotic stress. Plant Signal Behav. 2012;7(9):1138–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gong Z, Dong C-H, Lee H, Zhu J, Xiong L, Gong D, Stevenson B, Zhu J-K. A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell. 2005;17(1):256–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sourdille P, Charmet G, Trottet M, Tixier MH, Boeuf C, Negre S, Barloy D, Bernard M. Linkage between RFLP molecular markers and the dwarfing genes Rht-B1 and Rht-D1 in wheat. Hereditas. 1998;128(1):41–6.
Article
CAS
Google Scholar
Flintham JE, Börner A, Worland AJ, Gale MD. Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. J Agric Sci. 1997;128(1):11–25.
Article
Google Scholar
Jamali KD, Ali SA. Yield and yield components with relation to plant height in semi-dwarf wheat. Pak J Bot. 2008;40(4):1805–8 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.687.8119&rep=rep1&type=pdf.
Google Scholar
Law CN, Snape JW, Worland AJ. The genetical relationship between height and yield in wheat. Heredity. 1978;40(1):133.
Article
Google Scholar
Denčić S, Kastori R, Kobiljski B, Duggan B. Evaluation of grain yield and its components in wheat cultivars and landraces under near optimal and drought conditions. Euphytica. 2000;113(1):43–52.
Article
Google Scholar
Knezevic D, Zecevic V, Stamenkovic S, Atanasijevic S, Milosevic B. Variability of number of kernels per spike in wheat cultivars (Triticum aestivum L.). J Cent Eur Agric. 2012;13(3):608–14 https://jcea.agr.hr/en/issues/article/1099.
Article
Google Scholar
Tuinstra M, Ejeta G, Goldsbrough P. Heterogeneous inbred family (HIF) analysis a method for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet. 1997;95:1005–11.
Article
CAS
Google Scholar
Zheng Z, Wang H, Chen G, Yan G, Liu C. A procedure allowing up to eight generations of wheat and nine generations of barley per annum. Euphytica. 2013;191(2):311–6.
Article
Google Scholar
Yan G, Liu H, Wang H, Lu Z, Wang Y, Mullan D, Hamblin J, Liu C. Accelerated generation of selfed pure line plants for gene identification and crop breeding. Front Plant Sci. 2017;8:1786. https://doi.org/10.3389/fpls.2017.01786.
Article
PubMed
PubMed Central
Google Scholar
Ma J, Yan GJ, Liu CJ. Development of near-isogenic lines for a major QTL on 3BL conferring Fusarium crown rot resistance in hexaploid wheat. Euphytica. 2011;183(2):147–52.
Article
Google Scholar
Wang X, Liu H, Mia MS, Siddique KHM, Yan G. Development of near-isogenic lines targeting a major QTL on 3AL for pre-harvest sprouting resistance in bread wheat. Crop Pasture Sci. 2018;69(9):864–72.
Article
CAS
Google Scholar
Mia MS, Liu H, Wang X, Yan G. Multiple near-isogenic lines targeting a QTL hotspot of drought tolerance showed contrasting performance under post-anthesis water stress. Front Plant Sci. 2019;10:271.
Article
PubMed
PubMed Central
Google Scholar
Habib A, Shabala S, Shabala L, Zhou M, Liu C. Near-isogenic lines developed for a major QTL on chromosome arm 4HL conferring Fusarium crown rot resistance in barley. Euphytica. 2015;209(3):555–63.
Article
Google Scholar
de la Torre F, Sampedro J, Zarra I, Revilla G. AtFXG1, an Arabidopsis gene encoding α-L-fucosidase active against fucosylated xyloglucan oligosaccharides. Plant Physiol. 2002;128(1):247–55.
Article
PubMed Central
Google Scholar
Kurth EG, Peremyslov VV, Turner HL, Makarova KS, Iranzo J, Mekhedov SL, Koonin EV, Dolja VV. Myosin-driven transport network in plants. Proc Natl Acad Sci. 2017;114(8):E1385–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Damme M, Huibers RP, Elberse J, Van den Ackerveken G. Arabidopsis DMR6 encodes a putative 2OG-Fe (II) oxygenase that is defense-associated but required for susceptibility to downy mildew. Plant J. 2008;54(5):785–93.
Article
PubMed
Google Scholar
Shorinola O, Balcárková B, Hyles J, Tibbits JFG, Hayden MJ, Holušova K, Valárik M, Distelfeld A, Torada A, Barrero JM, et al. Haplotype analysis of the pre-harvest sprouting resistance locus Phs-A1 reveals a causal role of TaMKK3-a in global germplasm. Front Plant Sci. 2017;8:1555.
Article
PubMed
PubMed Central
Google Scholar
Mares D, Mrva K, Cheong J, Williams K, Watson B, Storlie E, Sutherland M, Zou Y. A QTL located on chromosome 4A associated with dormancy in white- and red-grained wheats of diverse origin. Theor Appl Genet. 2005;111(7):1357–64.
Article
CAS
PubMed
Google Scholar
Murray M, Thompson W. Rapid isolation of high molecular-weight plant DNA. Nucleic Acids Res. 1980;8:4321–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shorinola O, Bird N, Simmonds J, Berry S, Henriksson T, Jack P, Werner P, Gerjets T, Scholefield D, Balcarkova B, et al. The wheat Phs-A1 pre-harvest sprouting resistance locus delays the rate of seed dormancy loss and maps 0.3 cM distal to the PM19 genes in UK germplasm. J Exp Bot. 2016;67(14):4169–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker-Simmons M. Enhancement of ABA responsiveness in wheat embryos by high temperature. Plant Cell Environ. 1988;11:769–75.
Article
CAS
Google Scholar
Alaux M, Rogers J, Letellier T, Flores R, Alfama F, Pommier C, Mohellibi N, Durand S, Kimmel E, Michotey C. Linking the international wheat genome sequencing consortium bread wheat reference genome sequence to wheat genetic and phenomic data. Genome Biol. 2018;19(1):111.
Article
PubMed
PubMed Central
Google Scholar