Hassan R, Scholes R, Ash N. Ecosystems and human well-being: current state and trends. Washington DC: Island Press; 2005.
Google Scholar
Bonan GB. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science. 2008;320(5882):1444–9.
Article
CAS
PubMed
Google Scholar
Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM, Swetnam TW, Rauscher SA, Seager R, Grissinomayer HD. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Chang. 2013;3(3):292–7.
Article
Google Scholar
Dai A. Increasing drought under global warming in observations and models. Nat Clim Chang. 2013;3(1):52–8.
Article
Google Scholar
Shinozaki K, Yamaguchishinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot. 2006;58(2):221–7.
Article
PubMed
Google Scholar
Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high–salinity stresses using a full–length cDNA microarray. Plant J. 2002;31(3):279–92.
Article
CAS
PubMed
Google Scholar
Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M, Nambara E, Nakajima M, Kawashima M. Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol. 2008;49(8):1135–49.
Article
CAS
PubMed
Google Scholar
Coolen S, Proietti S, Hickman R, Olivas NHD, Huang P, Van Verk MC, Van Pelt JA, Wittenberg AHJ, De Vos M, Prins M. Transcriptome dynamics of Arabidopsis during sequential biotic and abiotic stresses. Plant J. 2016;86(3):249–67.
Article
CAS
PubMed
Google Scholar
Zhou J, Wang X, Jiao Y, Qin Y, Liu X, He K, Chen C, Ma L, Wang J, Xiong L, et al. Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol. 2007;63(5):591–608.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lenka SK, Katiyar A, Chinnusamy V, Bansal KC. Comparative analysis of drought-responsive transcriptome in Indica rice genotypes with contrasting drought tolerance. Plant Biotechnol J. 2015;9(3):315–27.
Article
CAS
Google Scholar
Fei L, Zhang H, Zhao H, Gao T, Song A, Jiang J, Chen F, Chen S. Chrysanthemum CmHSFA4 gene positively regulates salt stress tolerance in transgenic chrysanthemum. Plant Biotechnol J. 2018;16(7):1311–21.
Article
CAS
Google Scholar
Zheng J, Fu J, Gou M, Huai J, Liu Y, Jian M, Huang Q, Guo X, Dong Z, Wang H. Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Plant Mol Biol. 2010;72:407–21.
Article
CAS
PubMed
Google Scholar
Jeong S, Trotochaud AE, Clark SE. The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell. 1999;11(10):1925–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campo S, Baldrich P, Messeguer J, Lalanne E, Coca M, Segundo BS. Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. Plant Physiol. 2014;165(2):688–704.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen T, Li W, Hu X, Guo J, Liu A, Zhang B. A cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress. Plant Cell Physiol. 2015;56(5):917–29.
Article
CAS
PubMed
Google Scholar
Jung H, Chung PJ, Park SH, Kim YS, Suh JW, Kim JK. Overexpression of OsERF48 causes regulation of OsCML16, a calmodulin–like protein gene that enhances root growth and drought tolerance. Plant Biotechnol J. 2017;15(10):1295–308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan DH, Fenning T, Tang S, Xia X, Yin W. Genome-wide transcriptional response of Populus euphratica to long-term drought stress. Plant Sci. 2012;195(3):24–35.
Article
CAS
PubMed
Google Scholar
Pucholt P, Sjödin P, Weih M, Berlin S. Genome-wide transcriptional and physiological responses to drought stress in leaves and roots of two willow genotypes. BMC Plant Biol. 2015;15(1):244.
Article
PubMed
PubMed Central
CAS
Google Scholar
Qiu Q, Ma T, Hu Q, Liu B, Wu Y, Zhou H, Wang Q, Wang J, Liu J. Genome-scale transcriptome analysis of the desert poplar, Populus euphratica. Tree Physiol. 2011;31(4):452.
Article
PubMed
Google Scholar
Hamanishi ET, Barchet GL, Dauwe R, Mansfield SD, Campbell MM. Poplar trees reconfigure the transcriptome and metabolome in response to drought in a genotype- and time-of-day-dependent manner. BMC Genomics. 2015;16(1):329.
Article
PubMed
PubMed Central
CAS
Google Scholar
Karp A, Hanley SJ, Trybush SO, Macalpine W, Pei M. Shield I (2011) genetic improvement of willow for bioenergy and biofuels. J Integr Plant Biol. 2011;53(2):151–65.
Article
PubMed
Google Scholar
Hanley SJ, Karp A. Genetic strategies for dissecting complex traits in biomass willows (Salix spp.). Tree Physiol. 2014;34(11):1167–80.
Article
CAS
PubMed
Google Scholar
Kuzovkina YA, Weih M, Romero MA, Charles J, Hust S, Mcivor I, Karp A, Trybush S, Labrecque M, Teodorescu TI. Salix: botany and global horticulture. Hortic Rev. 2008;34(1):447–89.
Article
CAS
Google Scholar
Weih M. QTL analyses of drought tolerance and growth for a Salix dasyclados × Salix viminalis hybrid in contrasting water regimes. Theor Appl Genet. 2005;110(3):537–49.
Article
PubMed
Google Scholar
Bonosi L, Ghelardini L, Weih M. Growth responses of 15 Salix genotypes to temporary water stress are different from the responses to permanent water shortage. Trees. 2010;24(5):843–54.
Article
Google Scholar
Li J, Jia H, Han X, Zhang J, Sun P, Lu M, Hu J. Selection of reliable reference genes for gene expression analysis under abiotic stresses in the desert biomass willow, Salix psammophila. Front Plant Sci. 2016;7:1505.
PubMed
PubMed Central
Google Scholar
Huang J, Zhou Y, Yin L, Wenninger J, Zhang J, Hou G, Zhang E, Uhlenbrook S. Climatic controls on sap flow dynamics and used water sources of Salix psammophila in a semi-arid environment in Northwest China. Environ Earth Sci. 2015;73(1):289–301.
Article
Google Scholar
Li CJ, Yang X, Zhang Z, Zhou D, Zhang L, Zhang SC, Chen JM. Hydrothermal liquefaction of desert shrub Salix psammophila to high value-added chemicals and hydrochar with recycled processing water. Bioresources. 2013;8(2):2981–97.
Google Scholar
Yang X, Lyu H, Chen K, Zhu X, Zhang S, Chen J. Selective extraction of bio-oil from hydrothermal liquefaction of Salix psammophila by organic solvents with different polarities through multistep extraction separation. Bioresources. 2014;9(3):5219–33.
Google Scholar
Zeng X, Bai L, Wei Z, Yuan H, Wang Y, Xu Q, Tang Y, Nyima T. Transcriptome analysis revealed the drought-responsive genes in Tibetan hulless barley. BMC Genomics. 2016;17(1):386.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang C, Wei H. Designing microarray and RNA-Seq experiments for greater systems biology discovery in modern plant genomics. Mol Plant. 2015;8(2):196–206.
Article
CAS
PubMed
Google Scholar
Hsiao TC, Acevedo E, Fereres E, Henderson DW. Stress metabolism: water stress, growth, and osmotic adjustment. Philos Trans R Soc Lond Ser B Biol Sci. 1976;273:479–500.
Article
Google Scholar
Zivcak M, Brestic M, Sytar O. Osmotic adjustment and plant adaptation to drought stress. In: Hossain MA, Wani SH, Bhattacharjee S, Burritt DJ, Tran LP, editors. Drought stress tolerance in plants. Switzerland: Springer International Publishing; 2016. p. 105–143.
Chapter
Google Scholar
Chaves MM, Maroco J, Pereira JS. Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol. 2003;30(3):239–64.
Article
CAS
PubMed
Google Scholar
Liu C, Liu Y, Guo K, Fan D, Li G, Zheng Y, Yu L, Yang R. Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environ Exp Bot. 2011;71(2):174–83.
Article
CAS
Google Scholar
Zadražnik T, Moen A, Eggejacobsen W, Meglic V, Sustarvozlic J. Towards a better understanding of protein changes in common bean under drought: a case study of N-glycoproteins. Plant Physiol Biochem. 2017;118:400–12.
Article
PubMed
CAS
Google Scholar
Verbruggen N, Hermans C. Proline accumulation in plants: a review. Amino Acids. 2008;35(4):753–9.
Article
CAS
PubMed
Google Scholar
Filippou P, Bouchagier P, Skotti E, Fotopoulos V. Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. Environ Exp Bot. 2014;97:1–10.
Article
CAS
Google Scholar
De Carvalho MHC. Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav. 2008;3(3):156–65.
Article
Google Scholar
Jiang MY, Zhang JH. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot. 2002;53(379):2401–10.
Article
CAS
PubMed
Google Scholar
Miller G, Suzuki N, Ciftci-yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 2010;33(4):453–67.
Article
CAS
PubMed
Google Scholar
Bechtold U, Penfold CA, Jenkins DJ, Legaie R, Moore JD, Lawson T, Matthews JS, Vialet-Chabrand SR, Baxter L, Subramaniam S. Time-series transcriptomics reveals that AGAMOUS-LIKE22 links primary metabolism to developmental processes in drought-stressed Arabidopsis. Plant Cell. 2016;28(2):345–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iqbal A, Wang T, Wu G, Tang W, Zhu C, Wang D, Li Y, Wang H. Physiological and transcriptome analysis of heteromorphic leaves and hydrophilic roots in response to soil drying in desert Populus euphratica. Sci Rep. 2017;7(1):12188.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang M, Lv D, Ge P, Bian Y, Chen G, Zhu G, Li X, Yan Y. Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.). J Proteome. 2014;109:290–308.
Article
CAS
Google Scholar
Ding S, Zhang B, Qin F. Arabidopsis RZFP34/CHYR1, a ubiquitin E3 ligase, regulates stomatal movement and drought tolerance via SnRK2.6-mediated phosphorylation. Plant Cell. 2015;27(11):3228–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu X, Li QT, Xiong Q, Li W, Bi YD, Lai YC, Liu XL, Man WQ, Zhang WK, Ma B. The transcriptomic signature of developing soybean seeds reveals the genetic basis of seed trait adaptation during domestication. Plant J. 2016;86(6):530–44.
Article
CAS
PubMed
Google Scholar
Li J, Zhu L, Hull JJ, Liang S, Daniell H, Jin S, Zhang X. Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly). Plant Biotechnol J. 2016;14(10):1956–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mishra P, Singh N, Jain A, Jain N, Mishra V, G P, Sandhya KP, Singh NK, Rai V. Identification of cis-regulatory elements associated with salinity and drought stress tolerance in rice from co-expressed gene interaction networks. Bioinformation. 2018;14(3):123–31.
Article
PubMed
PubMed Central
Google Scholar
Selengut JD. MDP-1 is a new and distinct member of the haloacid dehalogenase family of aspartate-dependent phosphohydrolases. Biochemistry. 2001;40(42):12704–11.
Article
CAS
PubMed
Google Scholar
Fitchette A, Tran O, Dinh L, Bardor M. Plant proteomics and glycosylation. Methods Mol Biol. 2007;355:317–42.
CAS
PubMed
Google Scholar
Fortpied J, Maliekal P, Vertommen D, Van Schaftingen E. Magnesium-dependent phosphatase-1 is a protein-fructosamine-6-phosphatase potentially involved in glycation repair. J Biol Chem. 2006;281(27):18378–85.
Article
CAS
PubMed
Google Scholar
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Asp Med. 2014;35:1–71.
Article
CAS
Google Scholar
Zheng Z, Qamar SA, Chen Z, Mengiste T. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J. 2010;48(4):592–605.
Article
CAS
Google Scholar
Lippok B, Birkenbihl RP, Rivory G, Brummer J, Schmelzer E, Logemann E, Somssich IE. Expression of AtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite dna motif containing W box elements. Mol Plant-Microbe Interact. 2007;20(4):420–9.
Article
CAS
PubMed
Google Scholar
Jiang YQ, Deyholos MK. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol. 2009;69(1–2):91–105.
Article
CAS
PubMed
Google Scholar
Birkenbihl RP, Diezel C, Somssich IE. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiol. 2012;159(1):266–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou J, Wang J, Zheng Z, Fan B, Yu JQ, Chen Z. Characterization of the promoter and extended C-terminal domain of Arabidopsis WRKY33 and functional analysis of tomato WRKY33 homologues in plant stress responses. J Exp Bot. 2015;66(15):4567.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai Z, Li Y, Wang F, Cheng Y, Fan B, Yu JQ, Chen Z. Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense. Plant Cell. 2011;23(10):3824–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng M, Hsieh E, Chen J, Chen H, Lin T. Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response. Plant Physiol. 2012;158(1):363–75.
Article
CAS
PubMed
Google Scholar
Zhu X, Robe E, Jomat L, Aldon D, Mazars C, Galaud J. CML8, an Arabidopsis calmodulin-like protein, plays a role in Pseudomonas syringae plant immunity. Plant Cell Physiol. 2017;58(2):307–19.
PubMed
Google Scholar
Yin XM, Huang LF, Zhang X, Wang ML, Xu GY, Xia X. OsCML4 improves drought tolerance through scavenging of reactive oxygen species in rice. J Plant Biol. 2015;58(1):68–73.
Article
CAS
Google Scholar
Shoaib M, Liu H, Xing Y, Saddam H, Ouyang B, Zhang Y, Li H, Ye Z. Overexpression of calmodulin-like (ShCML44) stress-responsive gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses. Sci Rep. 2016;6:31772.
Article
CAS
Google Scholar
Smart RE, Bingham GE. Rapid estimates of relative water content. Plant Physiol. 1974;53(2):258–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39(1):205–7.
Article
CAS
Google Scholar
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350–6.
Article
CAS
Google Scholar
Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44:276–87.
Article
CAS
PubMed
Google Scholar
Beers RF, Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952;195(1):133–40.
CAS
PubMed
Google Scholar
Kar M, Mishra D. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol. 1976;57(2):315–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):1–13.
Article
CAS
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):1–12.
Article
CAS
Google Scholar
Conesa A, Gotz S, Garciagomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;28(1):27–30.
Article
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 2008;9(1):559.
Article
CAS
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jia H, Li J, Zhang J, Ren Y, Hu J, Lu M. Genome-wide survey and expression analysis of the stress-associated protein gene family in desert poplar, Populus euphratica. Tree Genet Genomes. 2016;12(4):78.
Article
Google Scholar
Clough SJ, Bent AF. Floral dip: a simplified method for agrobacterium–mediated transformation of Arabidopsis thaliana. Plant J. 1998;16(6):735–43.
Article
CAS
PubMed
Google Scholar