Chen ZJ, Scheffler BE, Dennis E, Triplett BA, Zhang T, Guo W, Chen X, Stelly DM, Rabinowicz PD, Town CD, et al. Toward sequencing cotton (Gossypium) genomes. Plant Physiol. 2007;145(4):1303–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Flynn R, Baral JB, Bajaj S, Hughs SE, Percy RGJE. Germplasm evaluation and transfer of Verticillium wilt resistance from Pima (Gossypium barbadense) to Upland cotton (G. hirsutum). Euphytica. 2012;187(2):147–60.
Article
Google Scholar
Romano P, Gray J, Horton P, Luan S. Plant immunophilins: functional versatility beyond protein maturation. New Phytol. 2005;166(3):753–69.
Article
CAS
PubMed
Google Scholar
Olga B, Marek Z, Yamile M, Tatsiana S, Maria K, Andrea BJNAR. Identification of RNA targets for the nuclear multidomain cyclophilin atCyp59 and their effect on PPIase activity. Nucleic Acids Res. 2013;41(3):1783–96.
Article
CAS
Google Scholar
Kumari S, Roy S, Singh P, Singla-Pareek SL, Pareek A. Cyclophilins: proteins in search of function. Plant Signaling & Behavior. 2013;8(1):e22734.
Article
CAS
Google Scholar
Kristine NB, Mallis RJ, Fulton DB, Andreotti AH. Regulation of the tyrosine kinase Itk by the peptidyl-prolyl isomerase cyclophilin A. Proc Natl Acad Sci U S A. 2002;99(4):1899–904.
Article
CAS
Google Scholar
Hong F, Lee J, Song JW, Lee SJ, Ahn H, Cho JJ, Ha J, Kim SS. Cyclosporin A blocks muscle differentiation by inducing oxidative stress and inhibiting the peptidyl-prolyl-cis-trans isomerase activity of cyclophilin A: cyclophilin A protects myoblasts from cyclosporin A-induced cytotoxicity. FASEB J. 2002;16(16):1633–5.
Article
CAS
PubMed
Google Scholar
Romano PG, Horton P, Gray JE. The Arabidopsis cyclophilin gene family. Plant Physiol. 2004;134(4):1268–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Juncheul A, Daewon K, You YN, Minsook S, Jeongmee P, Hyunsik H, Beomgi K, Sheng L, Hongseog P, Hyesun C. Classification of rice (Oryza sativa L. japonica Nipponbare) immunophilins (FKBPs, CYPs) and expression patterns under water stress. BMC Plant Biol. 2010;10(1):1–22.
Article
CAS
Google Scholar
Mainali HR, Chapman P, Dhaubhadel S. Genome-wide analysis of cyclophilin gene family in soybean ( Glycine max ). BMC Plant Biol. 2014;14(1):1–11.
Article
Google Scholar
Chou IT, Gasser CS. Characterization of the cyclophilin gene family of Arabidopsis thaliana and phylogenetic analysis of known cyclophilin proteins. Plant Mol Biol. 1997;35(6):873.
Article
CAS
PubMed
Google Scholar
Yoon DH, Sang SL, Park HJ, Lyu JI, Chong WS, Liu JR, Kim BG, Ahn JC, Cho HS. Overexpression of OsCYP19-4 increases tolerance to cold stress and enhances grain yield in rice (Oryza sativa). J Exp Bot. 2016;67(1):69–82.
Article
CAS
PubMed
Google Scholar
Lee SS, Park HJ, Jung WY, Lee A, Yoon DH, You YN, Kim HS, Kim BG, Ahn JC, Cho HS. OsCYP21-4, a novel Golgi-resident cyclophilin, increases oxidative stress tolerance in rice. Front Plant Sci. 2015;6:797.
PubMed
PubMed Central
Google Scholar
Sekhar K, Priyanka B, Reddy VD, Rao KV. Isolation and characterization of a pigeonpea cyclophilin (CcCYP) gene, and its over-expression in Arabidopsis confers multiple abiotic stress tolerance. Plant Cell Environ. 2010;33(8):1324–38.
CAS
PubMed
Google Scholar
Kong HY, Lee SC, Hwang BK. Expression of pepper cyclophilin gene is differentially regulated during the pathogen infection and abiotic stress conditions. Physiol Mol Plant Pathol. 2001;59(4):189–99.
Article
CAS
Google Scholar
Godoy AV, Lazzaro AS, Casalongué CA, San Segundo B. Expression of a Solanum tuberosum cyclophilin gene is regulated by fungal infection and abiotic stress conditions. Plant Sci. 2000;152(2):123–34.
Article
CAS
Google Scholar
Figueiredo A, Monteiro F, Pais MS, Rex M, Töpfer R, Zyprian E. Cyclophilin: A downy mildew resistance gene candidate in grapevine. Acta Horticulturae. 2014;1046(1046):371–8.
Article
Google Scholar
Zhu C, Wang Y, Li Y, Bhatti KH, Tian Y, Wu J. Overexpression of a cotton cyclophilin gene (GhCyp1) in transgenic tobacco plants confers dual tolerance to salt stress and Pseudomonas syringae pv. tabaci infection. Plant Physiol Biochem. 2011;49(11):1264–71.
Article
CAS
PubMed
Google Scholar
Li FG, Fan GY, Lu CR, Xiao GH, Zou CS, Kohel RJ, Ma ZY, Shang HH, Ma XF, Wu JY, et al. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol. 2015;33(5):524–30.
Article
PubMed
CAS
Google Scholar
Zhang TZ, Hu Y, Jiang WK, Fang L, Guan XY, Chen JD, Zhang JB, Saski CA, Scheffler BE, Stelly DM, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol. 2015;33(5):531–7.
Article
CAS
PubMed
Google Scholar
Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet. 2019;51(4):739–48.
Article
CAS
PubMed
Google Scholar
Trivedi DK, Yadav S, Vaid N, Tuteja N. Genome wide analysis of cyclophilin gene family from rice and Arabidopsis and its comparison with yeast. Plant Signal Behav. 2012;7(12):1653.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Q, Chen Q-J, Sun G-Q, Zheng K, Yao Z-P, Han Y-H, Wang L-P, Duan Y-J, Yu D-Q, Qu Y-Y. Genome-wide identification of cyclophilin gene family in cotton and expression analysis of the fibre development in Gossypium barbadense. Int J Mol Sci. 2019;20(2):349.
Article
PubMed Central
CAS
Google Scholar
Albà MM, Pagès M. Plant proteins containing the RNA-recognition motif. Trends Plant Sci. 1998;3(97):15–21.
Article
Google Scholar
Smith TF, Gaitatzes C, Saxena K, Neer EJ. The WD repeat: a common architecture for diverse functions. Trends Biochem Sci. 1999;24(5):181–5.
Article
CAS
PubMed
Google Scholar
Sane AP, Stein B, Westhoff P. The nuclear gene HCF107 encodes a membrane-associated R-TPR (RNA tetratricopeptide repeat)-containing protein involved in expression of the plastidial psbH gene in Arabidopsis. Plant J. 2005;42(5):720–30.
Article
CAS
PubMed
Google Scholar
Chen L, Hamada S, Fujiwara M, Zhu T, Thao NP, Wong HL, Krishna P, Ueda T, Kaku H, Shibuya N, et al. The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity. Cell Host Microbe. 2010;7(3):185–96.
Article
CAS
PubMed
Google Scholar
Dirk W, Roman B, Joachim S. The regulatory code for transcriptional response diversity and its relation to genome structural properties in A. thaliana. Plos Genetics. 2007;3(2):e11.
Article
CAS
Google Scholar
Wang C, Liu Y, Li S-S, Han G-Z. Insights into the origin and evolution of plant hormone signaling machinery. Plant Physiol. 2015;167(3):872–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang CY, Wang XF, Zhang GY, Lq W, Chi JN, Li ZK, Ma ZY. ESTs analysis of suppression subtractive hybridization library from upland cotton resistant cultivar infected by Verticillium dahliae. Cotton Sci. 2010;22(01):17–22.
Saito T, Niwa Y, Ashida H, Tanaka K, Kawamukai M, Matsuda H, Nakagawa T. Expression of a gene for cyclophilin which contains an amino-terminal endoplasmic reticulum-targeting signal. Plant Cell Physiol. 1999;40(1):77–87.
Article
CAS
PubMed
Google Scholar
Pogorelko GV, Mokryakova M, Fursova OV, Abdeeva I, Piruzian ES, Bruskin SA. Characterization of three Arabidopsis thaliana immunophilin genes involved in the plant defense response against Pseudomonas syringae. Gene. 2014;538(1):12–22.
Article
CAS
PubMed
Google Scholar
Mainali HR, Vadivel AK, Li X, Gijzen M, Dhaubhadel S. Soybean cyclophilin GmCYP1 interacts with an isoflavonoid regulator GmMYB176. Sci Rep. 2017;7:39550.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kong G, Zhao Y, Jing M, Huang J, Yang J, Xia Y, Kong L, Ye W, Xiong Q, Qiao Y. The activation of phytophthora effector Avr3b by plant cyclophilin is required for the nudix hydrolase activity of Avr3b. PLoS Pathog. 2015;11(8):e1005139.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang H, Wang J, Li S, Wang S, Liu M, Wang W, Zhao Y. Molecular cloning, expression, purification and functional characterization of an antifungal cyclophilin protein from Panax ginseng. Biomedical Reports. 2017;7(6):527–31.
CAS
PubMed
PubMed Central
Google Scholar
Lee JR, Park S-C, Kim J-Y, Lee SS, Park Y, Cheong G-W, Hahm K-S, Lee SY. Molecular and functional characterization of a cyclophilin with antifungal activity from Chinese cabbage. Biochem Biophys Res Commun. 2007;353(3):672–8.
Article
CAS
PubMed
Google Scholar
Ye XY, Ng TB. Isolation of a new cyclophilin-like protein from chickpeas with mitogenic, antifungal and anti-HIV-1 reverse transcriptase activities. Life Sci. 2002;70(10):1129–38.
Article
CAS
PubMed
Google Scholar
Ye XY, Ng TB. Isolation of Unguilin, a cyclophilin-like protein with anti-mitogenic, antiviral, and antifungal activities, from Black-Eyed Pea. J Protein Chem. 2001;20(5):353–9.
Article
CAS
PubMed
Google Scholar
Theis T, Stahl U. Antifungal proteins: targets, mechanisms and prospective applications. Cell Mol Life Sci. 2004;61(4):437–55.
Article
CAS
PubMed
Google Scholar
Chan BP, Kim HS, Sun CK. Mechanism of action of the antimicrobial peptide Buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun. 1998;244(1):253–7.
Article
Google Scholar
Zhou TT, Zhao YL, Guo HS. Secretory proteins are delivered to the septin-organized penetration interface during root infection by Verticillium dahliae. PLoS Pathog. 2017;13(3):e1006275.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang Y, Wang X, Rong W, Yang J, Li Z, Wu L, Zhang G, Ma Z. Histochemical analyses reveal that stronger intrinsic defenses in Gossypium barbadense than in G. hirsutum are associated with resistance to Verticillium dahliae. Mol Plant Microbe Interact. 2017;30(12):984–96.
Article
CAS
PubMed
Google Scholar
Wang GN, Zhao GY, Yue XW, Li ZK, Zhang Y, Zhang GY, Wu LQ, Wang XF, Ma ZY. Pathogenicity and ISSR genetic differentiation of Verticillium dahliae isolates from cotton growing areas of Hebei Province. Cotton Science. 2012;24(4):348–57.
CAS
Google Scholar
Yang J, Ji L, Wang X, Zhang Y, Wu L, Yang Y, Ma Z. Overexpression of 3-deoxy-7-phosphoheptulonate synthase gene from Gossypium hirsutum enhances Arabidopsis resistance to Verticillium wilt. Plant Cell Rep. 2015;34(8):1429–41.
Article
CAS
PubMed
Google Scholar
Artico S, Nardeli SM, Brilhante O, Grossi-de-Sa MF, Alves-Ferreira M. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biol. 2010;10:49.
Article
PubMed
PubMed Central
CAS
Google Scholar
Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005;139(1):5–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16(6):735–43.
Article
CAS
PubMed
Google Scholar
Zhang B, Yang Y, Chen T, Yu W, Liu T, Li H, Fan X, Ren Y, Shen D, Liu L, et al. Island cotton Gbve1 gene encoding a receptor-like protein confers resistance to both defoliating and non-defoliating isolates of Verticillium dahliae. PLoS One. 2012;7(12):e51091.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fradin EF, Zhang Z, Juarez Ayala JC, Castroverde CD, Nazar RN, Robb J, Liu CM, Thomma BP. Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiol. 2009;150(1):320–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cary JW, Jaynes JM, Cleveland TRK. Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. Plant Sci. 2000;154(2):171–81.
Article
CAS
PubMed
Google Scholar