Williams PH, Hill CB. Rapid-cycling populations of Brassica. Science. 1986;232:1385–9.
Article
CAS
PubMed
Google Scholar
Wisconsin Fast Plants of the University of Wisconsin. https://fastplants.org/. Accessed 3 Dec 2018.
Gervasi DDL, Schiestl FP. Real-time divergent evolution in plants driven by pollinators. Nat Commun. 2017;8:14691.
Article
PubMed
PubMed Central
Google Scholar
Lin K, Zhang N, Severing EI, Nijveen H, Cheng F, Visser RG, et al. Beyond genomic variation - comparison and functional annotation of three Brassica rapa genomes: a turnip, a rapid cycling and a Chinese cabbage. BMC Genomics. 2014;15:250.
Article
PubMed
PubMed Central
Google Scholar
Iniguez-Luy FL, Lukens L, Farnham MW, Amasino RM, Osborn TC. Development of public immortal mapping populations, molecular markers and linkage maps for rapid cycling Brassica rapa and B. oleracea. Theor Appl Genet. 2009;120:31–43.
Article
CAS
PubMed
Google Scholar
Lascoux M, Lee JK. One step beyond lethal equivalents: characterization of deleterious loci in the rapid cycling Brassica rapa L. base population. Genetica. 1998;104:161–70.
Article
CAS
PubMed
Google Scholar
Rood SB, Williams PH, Pearce D, Murofushi N, Mander LN, Pharis RP. A mutant gene that increases gibberellin production in Brassica. Plant Physiol. 1990;93:1168–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murata M, Orton TJ. Callus initiation and regeneration capacities in Brassica species. Plant Cell Tissue Organ Cult. 1987;11:111–23.
Article
Google Scholar
Li G, Yue L, Li F, Zhang S, Zhang H, Qian W, et al. Research progress on Agrobacterium tumefaciens-based transgenic technology in Brassica rapa. Hortic Plant J. 2018;4:126–32.
Article
Google Scholar
Teo W, Lakshmanan P, Kumar P, Goh C-J, Swarup S. Direct shoot formation and plant regeneration from cotyledon explants of rapid-cycling Brassica rapa. In Vitro Cell Dev Biol Plant. 1997;33:288–92.
Article
Google Scholar
Cogbill S, Faulcon T, Jones G, McDaniel M, Harmon G, Blackmon R, et al. Adventitious shoot regeneration from cotyledonary explants of rapid-cycling fast plants of Brassica rapa L. Plant Cell Tissue Organ Cult. 2010;101:127–33.
Article
Google Scholar
Herrera Díaz A. Regeneration and plastid transformation approaches in Arabidopsis thaliana and rapid-cycling Brassica rapa. München: LMU; 2011.
Google Scholar
Bechtold N, Ellis J, Pelletier G. In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Paris Life Sci. 1993;316:1194–9.
CAS
Google Scholar
Bent A. Arabidopsis in planta transformation. Uses , mechanisms , and prospects for transformation of other species. Plant Physiol. 2000;124:1540–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu H, Wang X, Zhao H, Liu F. An intensive understanding of vacuum infiltration transformation of pakchoi (Brassica rapa ssp. chinensis). Plant Cell Rep. 2008;27:1369–76.
Article
CAS
PubMed
Google Scholar
Saha P, Blumwald E. Spike-dip transformation of Setaria viridis. Plant J. 2016;86:89–101.
Article
CAS
PubMed
Google Scholar
Satya Sharada M, Kumari A, Kumar Pandey A, Sharma S, Sharma P, Sreelakshmi Y, et al. Generation of genetically stable transformants by Agrobacterium using tomato floral buds. Plant Cell Tissue Organ Cult. 2017;129:299–312.
Article
Google Scholar
Fang F, Oliva M, Ehi-Eromosele S, Zaccai M, Arazi T, Oren-Shamir M. Successful floral-dipping transformation of post-anthesis lisianthus (Eustoma grandiflorum) flowers. Plant J. 2018;96:869–79.
Article
CAS
PubMed
Google Scholar
Cao MQ, Liu F, Yao L, Bouchez D, Tourneur C, Li Y, et al. Transformation of pakchoi (Brassica rapa L. ssp chinensis) by Agrobacterium infiltration. Mol Breed. 2000;6:67–72.
Article
Google Scholar
Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–43.
Article
CAS
PubMed
Google Scholar
Ye G-N, Stone D, Pang S-Z, Creely W, Gonzalez K, Hinchee M. Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. Plant J. 1999;19:249–57.
Article
PubMed
Google Scholar
Bechtold N, Jaudeau B, Jolivet S, Maba B, Vezon D, Voisin R, et al. The maternal chromosome set is the target of the T-DNA in the in planta transformation of Arabidopsis thaliana. Genetics. 2000;155:1875–87.
CAS
PubMed
PubMed Central
Google Scholar
Desfeux C, Clough SJ, Bent AF. Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol. 2000;123:895–904.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deeba F, Hyder M, Shah S, Naqvi SM. Multiplex PCR assay for identification of commonly used disarmed Agrobacterium tumefaciens strains. Springerplus. 2014;3:358.
Article
PubMed
PubMed Central
Google Scholar
Nagashima Y, Koiwa H. High throughput selection of antibiotic-resistant transgenic Arabidopsis plants. Anal Biochem. 2017;525:44–5.
Article
CAS
PubMed
Google Scholar
Takasaki T, Hatakeyama K, Ojima K, Watanabe M, Toriyama K, Hinata K. Factors influencing Agrobacterium-mediated transformation of Brassica rapa L. Breed Sci. 1997;47:127–34.
Google Scholar
Kuvshinov V, Koivu K, Kanerva A, Pehu E. Agrobacterium tumefaciens-mediated transformation of greenhouse-grown Brassica rapa ssp. oleifera. Plant Cell Rep. 1999;18:773–7.
Article
CAS
Google Scholar
Radke S, Turner J, Facciotti D. Transformation and regeneration of Brassica rapa using Agrobacterium tumefaciens. Plant Cell Rep. 1992;11:499–505.
Article
CAS
PubMed
Google Scholar
Lee L-Y, Gelvin SB. T-DNA binary vectors and systems. Plant Physiol. 2008;146:325–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kononov ME, Bassuner B, Gelvin SB. Integration of T-DNA binary vector “backbone” sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J. 1997;11:945–57.
Article
CAS
PubMed
Google Scholar
Abdal-Aziz SA, Pliego-Alfaro F, Quesada MA, Mercado JA. Evidence of frequent integration of non-T-DNA vector backbone sequences in transgenic strawberry plant. J Biosci Bioeng. 2006;101:508–10.
Article
CAS
PubMed
Google Scholar
Wu H, Sparks CA, Jones HD. Characterisation of T-DNA loci and vector backbone sequences in transgenic wheat produced by Agrobacterium-mediated transformation. Mol Breed. 2006;18:195–208.
Article
Google Scholar
Wenck A, Czakó M, Kanevski I, Márton L. Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation. Plant Mol Biol. 1997;34:913–22.
Article
CAS
PubMed
Google Scholar
De Buck S, De Wilde C, Van Montagu M, Depicker A. T-DNA vector backbone sequences are frequently integrated into the genome of transgenic plants obtained by Agrobacterium-mediated transformation. Mol Breed. 2000;6:459–68.
Article
Google Scholar
Gelvin SB. Integration of Agrobacterium T-DNA into the plant genome. Annu Rev Genet. 2017;51:195–217.
Article
CAS
PubMed
Google Scholar
Oltmanns H, Frame B, Lee L-Y, Johnson S, Li B, Wang K, et al. Generation of backbone-free, low transgene copy plants by launching T-DNA from the Agrobacterium chromosome. Plant Physiol. 2010;152:1158–66.
Article
CAS
PubMed
Google Scholar
De Paepe A, De Buck S, Hoorelbeke K, Nolf J, Peck I, Depicker A. High frequency of single-copy T-DNA transformants produced by floral dip in CRE-expressing Arabidopsis plants. Plant J. 2009;59:517–27.
Article
PubMed
Google Scholar
Koncz C, Schell J. The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet. 1986;204:383–96.
Article
CAS
Google Scholar
Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol. 2015;15:16.
Article
PubMed
PubMed Central
Google Scholar
Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, et al. Current protocols in molecular biology. New York: Wiley; 1997.
Google Scholar