Adami M, Franceschi PD, Brandi F, Liverani A, Giovannini D, Rosati C, et al. Identifying a carotenoid cleavage dioxygenase (ccd4) gene controlling yellow/white fruit flesh color of peach. Plant Mol Biol Rep. 2013;31(5):1166–75.
Article
CAS
Google Scholar
Li L, Yuan H. Chromoplast biogenesis and carotenoid accumulation. Arch Biochem Biophys. 2013;539(2):102–9.
Article
CAS
Google Scholar
Henderson WR, Scott GH, Wehner TC. Interaction of flesh color genes in watermelon. J Hered. 1998;89(1):50–3.
Article
Google Scholar
Burger Y, Paris H, Cohen R, Katzir N, Tadmor Y, Lewinsohn E, et al. Genetic diversity of Cucumis melo. Hortic Rev. Am Soc Hortic Sci. 2009;36(1):165–98.
Google Scholar
Zhang L, Zhang ZK, Zheng TT, Wei WL, Zhu YM, Gao YS, et al. Characterization of carotenoid accumulation and carotenogenic gene expression during fruit development in yellow and white loquat fruit. Horticultural Plant J. 2016;2(1):9–15.
Article
Google Scholar
Ferruzzia M, Blakeslee J. Digestion absorption and cancer preventative activity of dietary chlorophyll derivatives. Nutr Res. 2007;27(1):1–12.
Article
Google Scholar
Gore RD, Palaskar SJ, Bartake AR. Wheatgrass: green blood can help to fight Cancer. J Clin Diagn Res. 2017;11(6):ZC40–2.
CAS
PubMed
PubMed Central
Google Scholar
DellaPenna D, Pogson BJ. Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol. 2006;57:711–38.
Article
CAS
Google Scholar
Tzuri G, Zhou XJ, Chayut N, Yuan H, Portnoy V, Meir A, et al. A ‘golden’ SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). Plant J. 2015;82(2):267–79.
Article
CAS
Google Scholar
Hughes M. The inheritance of two characters of Cucumis melo and their interrelationship. Proc Am Soc Hortic Sci. 1948;52:399–402.
Google Scholar
Imam MKL, Abo-Bakr MA, Hanna HY. Inheritance of some economic characters in crosses between sweet melon and snake cucumber. I. Inheritance of qualitative characters. Assiut J Ag Sco. 1972;3:363–80.
Google Scholar
Clayberg C. Interaction and linkage test of flesh color genes in Cucumis melo L. Rep Cucurbit Genet Coop. 1992;15:53.
Google Scholar
Perin C, Hagen LS, de Conto V, Katzir N, Danin-Poleg Y, Portnoy V, Baudracco-Arnas S, Chadoeuf J, Dogimont C, Pitrat M. A reference map of Cucumis melo based on two recombinant inbred line populations. Theor Appl Genet. 2002;104:1017–34.
Article
CAS
Google Scholar
Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arus P. IdentiWcation of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet. 2004;108:750–8.
Article
CAS
Google Scholar
Fukino N, Ohara T, Monforte A, Sugiyama M, Sakata Y, Kunihisa M, Matsumoto S. Identification of QTLs for resistance to powdery mildew and SSR markers diagnostic for powdery mildew resistance genes in melon (Cucumis melo L.). Theor Appl Genet. 2008;118:165–75.
Article
CAS
Google Scholar
Cuevas HE, Staub JE, Simon PW, Zalapa JE, McCreight JD. Mapping of genetic loci that regulated quantity ofβ-carotene in fruit of U.S. Western shipping melon (Cucumis melo L.). Theor Appl Genet. 2008;117:1345–59.
Article
CAS
Google Scholar
Cuevas HE, Staub JE, Simon PW, Zalapa JE. A consensus linkage map identifies genomic regions controlling fruit maturity and beta-carotene-associated flesh color in melon (Cucumis melo L.). Theor Appl Genet. 2009;119:741–56.
Article
CAS
Google Scholar
Tadmor Y, King S, Levi A, Davis A, Meir A, Wasserman B, Hirschberg J, Lewinsohn E. Comparative fruit colouration in watermelon and tomato. Food Res Int. 2005;38:837–41.
Article
CAS
Google Scholar
Bang H, Davis AR, Kim S, Leskovar DI, King SR. Flesh color inheritance and gene interactions among canary yellow, pale yellow, and red watermelon. J Am Soc Hortic Sci. 2010;135(4):362–8.
Article
Google Scholar
Wehner TC. Gene list for watermelon. Cucurbit Genet Coop Rep. 2007;30:96–120.
Google Scholar
Hashizume T, Shimamoto I, Hirai M. Construction of a linkage map and QTL analysis of horticultural traits for watermelon [Citrullus lanatus (THUNB.) MATSUM & NAKAI] using RAPD, RFLP and ISSR markers. Theor Appl Genet. 2003;106:779–85.
Article
CAS
Google Scholar
Liu S, Gao P, Wang X, Davis AR, Baloch AM, Luan F. Mapping of quantitative trait loci for lycopene content and fruit traits in citrullus lanatus. Euphytica. 2015;202(3):411–26.
Article
CAS
Google Scholar
Liu S, Gao P, Zhu Q, Luan F, Davis AR, Wang X. Development of cleaved amplified polymorphic sequence markers and a CAPS-based genetic linkage map in watermelon (Citrullus lanatus [Thunb.] Matsum. And Nakai) constructed using whole-genome resequencing data. Breed Sci. 2016;66:244–59.
Article
CAS
Google Scholar
Branham S, Vexler L, Meir A, Tzuri G, Frieman Z, Levi A, Wechter WP, Tadmor Y, Gur A. Genetic mapping of a major codominant QTL associated with β-carotene accumulation in watermelon. Mol Breeding. 2017;37(12):146.
Article
Google Scholar
Zhang J, Guo SG, Ren Y, Zhang HY, Gong GY, Zhou M, et al. High-level expression of a novel chromoplast phosphate transporter ClPHT4;2 is required for flesh color development in watermelon. New Phytol. 2016;213(3):1208–21.
Article
Google Scholar
Qi CZ. A new type of cucumber, Cucumis sativus L. var. xishuangbannanesis Qi et Yuan. Acta Hortic Sin. 1983;10(4):259–63.
Google Scholar
Bo KL, Song H, Shen J, Qian CT, Staub JE, Simon PW, et al. Inheritance and mapping of the ore gene controlling the quantity of β-carotene in cucumber (Cucumis sativus L.) endocarp. Mol Breed. 2012;30(1):335–44.
Article
CAS
Google Scholar
Cuevas HE, Song H, Staub JE, Simon PW. Inheritance of beta-carotene-associated flesh color in cucumber (Cucumis sativus L.) fruit. Euphytica. 2010;171(3):301–11.
Article
CAS
Google Scholar
Lu HW, Miao H, Tian GL, Wehner TC, Gu XF, Zhang SP. Molecular mapping and candidate gene analysis for yellow fruit flesh in cucumber. Mol Breeding. 2015;35(2):64.
Article
Google Scholar
Kooistra E. Inheritance of fruit flesh and skin colours in powdery mildew resistant cucumbers (Cucumis sativus L.). Euphytica. 1971;20(4):521–3.
Google Scholar
Yang LM, Koo DH, Li Y, Zhang X, Luan F, Havey MJ, et al. Chromosome rearrangements during domestication of cucumber as revealed from high-density genetic mapping and draft genome assembly. Plant J. 2012;71(6):895–906.
Article
CAS
Google Scholar
Navazio JP. Utilization of high carotene cucumber germplasm for genetic improvement of nutritional quality. Ph.D. thesis: University of Wisconsin-Madison; 1994.
Royle JF. Illustrations of the botany of the Himalayan Mountains. London: Wm. H. Alland and Co. p. 1835.
Duthie JF. Flora of the upper Gangetic plain, and of the adjacent Siwalik and sub-Himalayan tracts. Superintendent of government printing publication, Calcutta; 1903.
Google Scholar
Hooker JD. Cucumis sativus var. sikkimensis cultivated in the Himalaya Mountains. Curtis’ Bot Mag 102: tab. 6206. https://species.wikimedia.org/wiki/Cucumis_sativus_var._sikkimensis, 1876.
Bo KL, Ma Z, Chen JF, Weng Y. Molecular mapping reveals structural rearrangements and quantitative trait loci underlying traits with local adaptation in semi-wild Xishuangbana cucumber (Cucumis sativus L. var. xishuangbannanesis Qi et Yuan). Theor Appl Genet. 2015;128(1):25–39.
Article
CAS
Google Scholar
Kirkbride JH. Biosystematic monograph of the genus Cucumis (Cucurbitaceae). Parkway Publishers, Boone. 1993;pp 84–88.
de Wilde WJJ, Duyfjes BEE. Cucumis sativus L. forma hardwickii (Royle) W.J. de Wilde and Duyfjes and feral forma sativus. Thai For Bull (Bot). 2010;38:98–107.
Google Scholar
Ren Y, Zhang Z, Liu J, Staub JE, Han Y, Cheng Z, et al. An integrated genetic and cytogenetic map of the cucumber genome. PLoS One. 2009;4:e5795.
Article
Google Scholar
Miao H, Gu XF, Zhang SP, Zhang ZH, Huang SW, Wang Y, et al. Mapping QTLs for fruit-associated traits in Cucumis sativus L. Sci Agric Sin. 2011;44:5031–40.
Google Scholar
Hoffmann AA, Rieseberg LH. Revisiting the impact of inversions in evolution, from population genetic markers to drivers of adaptive shifts and speciation? Annu Rev Ecol Evol Syst. 2008;39:21–42.
Article
Google Scholar
Kirkpatrick M. How and why chromosome inversions evolve. PLoS Biol. 2010;8:e1000501.
Article
Google Scholar
Lowry DB, Willis JH. A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biol. 2010;8(9):e1000500.
Article
Google Scholar
Weng Y, Johnson S, Staub JE, Huang SW. An extended intervarietal microsatellite linkage map of cucumber, Cucumis sativus L. HortSci. 2010;45(6):882–6.
Article
Google Scholar
Zhang WW, Pan JS, He HL, Zhang C, Li Z, Zhao JL, et al. Construction of a high density integrated genetic map for cucumber (Cucumis sativus L.). Theor Appl Genet. 2012;124(2):249–59.
Article
CAS
Google Scholar
Nadakuduti SS, Holdsworth WL, Klein CL, Barry CS. KNOX genes influence a gradient of fruit chloroplast development through regulation of GOLDEN2-LIKE expression in tomato. Plant J. 2014;78(6):1022–33.
Article
CAS
Google Scholar
Powell ALT, Nguyen CV, Hill T, Cheng KL, Figueroa-Balderas R, Aktas H, et al. uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science. 2012;336(6089):1711–5.
Article
CAS
Google Scholar
Kerr EA. Green flesh, gf. Rpt Tomato Genet Coop. 1956;6:17.
Google Scholar
Akhtar MS, Goldschmidt EE, John I, Rodoni S, Matile P, Grierson D. Altered patterns of senescence and ripening in gf, a stay-green mutant of tomato (Lycopersicon esculentum mill.). J Exp Bot. 1999;50(336):1115–22.
Article
CAS
Google Scholar
Cheung AY, McNellis T, Piekos B. Maintenance of chloroplast components during chromoplast differentiation in the tomato mutant green flesh. Plant Physiol. 1993;101(4):1223–9.
Article
CAS
Google Scholar
Roca M, Hornero-Mendez D, Gandul-Rojas B, Minguez-Mosquera MI. Stay-green phenotype slows the carotenogenic process in Capsicum annuum (L.) fruits. J Agric Food Chem. 2006;54(23):8782–7.
Article
CAS
Google Scholar
Liu Y, Roof S, Ye Z, Barry C, van Tuinen A, Vrebalov J, et al. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. P Natl Acad Sci USA. 2004;101(26):9897–902.
Article
CAS
Google Scholar
Kolotilin I, Koltai H, Tadmor Y, Bar-Or C, Reuveni M, Meir A, et al. Transcriptional profiling of high pigment-2dg tomato mutant links early fruit plastid biogenesis with its overproduction of phytonutrients. Plant Physiol. 2007;145(2):389–401.
Article
CAS
Google Scholar
Rohrmann J, Tohge T, Alba R, Osorio S, Caldana C, McQuinn R, et al. Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development. Plant J. 2011;68(6):999–1013.
Article
CAS
Google Scholar
Waters MT, Moylan EC, Langdale JA. GLK transcription factors regulate chloroplast development in a cell-autonomous manner. Plant J. 2008;56(3):432–44.
Article
CAS
Google Scholar
Pan Y, Bradley G, Pyke K, Ball G, Lu C, Fray R, et al. Network inference analysis identifies an aprr2-like gene linked to pigment accumulation in tomato and pepper fruits. Plant Physiol. 2014;161:1476–85.
Article
Google Scholar
Qi JJ, Liu X, Shen D, Miao H, Xie BY, Li XX, et al. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet. 2013;45(12):1510–5.
Article
CAS
Google Scholar
Tang YL, Huang JF, Wang RC. Change law of hyperspectral data in related with chlorophyll and carotenoid in rice at different developmental stages. Rice Sci. 2004;11:274–82.
Google Scholar
Cavagnaro PF, Senalik DA, Yang LM, Simon PW, Harkins TT, Kodira CD, et al. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics. 2010;11(1):569.
Article
Google Scholar
Li YH, Yang LM, Pathak M, Li DW, He XM, Weng Y. Fine genetic mapping of cp: a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Theor Appl Genet. 2011;123(6):973–83.
Article
Google Scholar
Broman KW, Wu H, Sen S, Churchill GA. R/QTL: QTL mapping in experimental crosses. Bioinformatics. 2003;19(7):889–90.
Article
CAS
Google Scholar
Weng Y, Colle M, Wang Y, Yang L, Rubinstein M, Sherman A, et al. QTL mapping in multiple populations and development stages reveals dynamic QTL for fruit size in cucumbers of different market classes. Theor Appl Genet. 2015;128(9):1747–63.
Article
CAS
Google Scholar
Bo KL, Wang H, Pan YP, Behera TK, Pandey S, Wen CL, et al. SHORT HYPOCOTYL1 encodes a SMARCA3-like chromatin remodeling factor regulating elongation. Plant Physiol. 2016;172:1273–92.
CAS
PubMed
PubMed Central
Google Scholar
Bo KL, Miao H, Wang M, Xie XX, Song ZC, Xie Q, et al. Novel loci fsd6.1 and Csgl3 regulate ultra-high fruit spine density in cucumber. Theor Appl Genet. 2019;132(1):27–40.
Article
CAS
Google Scholar
Shang Y, Ma YS, Zhou Y, Zhang HM, Duan LX, Chen HM, et al. Biosynthesis, regulation, and domestication of bitterness in cucumber. Science. 2014;346(6213):1084–8.
Article
CAS
Google Scholar
Turner SD. Qqman: an R package for visualizing GWAS results using QQ and Manhattan plots. bioRxiv. 2014;(5):005165. https://doi.org/10.1101/00516.