Yang Y, Song W, Zhu C, Lin S, Zhao F, Wu X, et al. Homosecoiridoids from the flower buds of Lonicera japonica. J Nat Prod. 2011;74(10):2151–60.
Seung-Hwan K, Shi-Xun M, Sa-Ik H, Seok-Yong L, Choon-Gon J. Lonicera japonica THUNB. Extract inhibits lipopolysaccharide-stimulated inflammatory responses by suppressing NF-κB signaling in BV-2 microglial cells. J Med Food. 2015;18(7):762–75.
Article
Google Scholar
Ding Y, Cao Z, Cao L, Ding G, Wang Z, Xiao W. Antiviral activity of chlorogenic acid against influenza a (H1N1/H3N2) virus and its inhibition of neuraminidase. Sci Rep. 2017;7:45723.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ku SK, Seo BI, Park JH, Park GY, Seo YB, Kim JS, et al. Effect of Lonicerae Flos extracts on reflux esophagitis with antioxidant activity. World J Gastroenterol. 2009;15(38):4799–805.
Article
PubMed
PubMed Central
Google Scholar
Hye-Jung Y, Hyun-Jung K, Seon SY, Eun-Hee P, Chang-Jin L. Anti-angiogenic, antinociceptive and anti-inflammatory activities of Lonicera japonica extract. J Pharm Pharmacol. 2008;60(6):779–86.
Article
CAS
Google Scholar
Shang X, Pan H, Li M, Miao X, Ding H. Lonicera japonica Thunb.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J Ethnopharmacol. 2011;138(1):1–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Su D, Li S, Zhang W, Wang J, Wang J, Lv M. Structural elucidation of a polysaccharide from Lonicera japonica flowers, and its neuroprotective effect on cerebral ischemia-reperfusion injury in rat. Int J Biol Macromol. 2017;99:350–7.
Article
CAS
PubMed
Google Scholar
Wang D, Zhao X, Liu Y. Hypoglycemic and hypolipidemic effects of a polysaccharide from flower buds of Lonicera japonica in streptozotocin-induced diabetic rats. Int J Biol Macromol. 2017;102:396–404.
Article
CAS
PubMed
Google Scholar
Zhang L, Long Y, Fu C, Xiang J, Gan J, Wu G, et al. Different gene expression patterns between leaves and flowers in Lonicera japonica revealed by transcriptome analysis. Front Plant Sci. 2016;7:637.
PubMed
PubMed Central
Google Scholar
Chinese Pharmacopoeia Commission. The Pharmacopoeia of the People’s Republic of China, 2010 ed. Beijing: China Medical Science Press; 2010. p. 205–6.
Google Scholar
Kong DX, Li YQ, Bai M, He HJ, Liang GX, Wu H. Correlation between the dynamic accumulation of the main effective components and their associated regulatory enzyme activities at different growth stages in Lonicera japonica Thunb. Ind Crop Prod. 2017;96:16–22.
Article
CAS
Google Scholar
Qi X, Yu X, Xu D, Fang H, Dong K, Li W, et al. Identification and analysis of CYP450 genes from transcriptome of Lonicera japonica and expression analysis of chlorogenic acid biosynthesis related CYP450s. PeerJ. 2017;5:e3781.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rai A, Kamochi H, Suzuki H, Nakamura M, Takahashi H, Hatada T, et al. De novo transcriptome assembly and characterization of nine tissues of Lonicera japonica to identify potential candidate genes involved in chlorogenic acid, luteolosides, and secoiridoid biosynthesis pathways. J Nat Med. 2017;71(1):1–15.
Article
CAS
PubMed
Google Scholar
Yuan Y, Song L, Li M, Liu G, Chu Y, Ma L, et al. Genetic variation and metabolic pathway intricacy govern the active compound content and quality of the Chinese medicinal plant Lonicera japonica thunb. BMC Genomics. 2012;13(1):195.
Article
CAS
PubMed
PubMed Central
Google Scholar
Broun P. Transcription factors as tools for metabolic engineering in plants. Curr Opin Plant Biol. 2004;7(2):202–9.
Article
CAS
PubMed
Google Scholar
Vom Endt D, Kijne JW, Memelink J. Transcription factors controlling plant secondary metabolism: what regulates the regulators? Phytochemistry. 2002;61(2):107–14.
Article
CAS
PubMed
Google Scholar
Yang CQ, Fang X, Wu XM, Mao YB, Wang LJ, Chen XY. Transcriptional regulation of plant secondary metabolism. J Integr Plant Biol. 2012;54(10):703–12.
Article
CAS
PubMed
Google Scholar
Antonio G, Mingzhe Z, LJ M, LA M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J. 2008;53(5):814–27.
Article
CAS
Google Scholar
Jie L, Eugenio B, Lionel H, Adrian P, Ricarda N, Paul B, et al. AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: expression in fruit results in very high levels of both types of polyphenol. Plant J. 2008;56(2):316–26.
Article
CAS
Google Scholar
Xu W, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends Plant Sci. 2015;20(3):176–85.
Article
CAS
PubMed
Google Scholar
Marsch-Martínez N, de Folter S. Hormonal control of the development of the gynoecium. Curr Opin Plant Biol. 2016;29:104–14.
Article
PubMed
CAS
Google Scholar
Gan E-S, Huang J, Ito T. Functional roles of histone modification, chromatin remodeling and micrornas in Arabidopsis flower development. Int Rev Cell Mol Biol. 2013;305:115–61.
Article
CAS
PubMed
Google Scholar
Chaiwanon J, Wang W, Zhu J-Y, Oh E, Wang Z-Y. Information integration and communication in plant growth regulation. Cell. 2016;164(6):1257–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang B, Guo X, Wang C, Ma J, Niu F, Zhang H, et al. Identification and characterization of plant-specific NAC gene family in canola (Brassica napus L.) reveal novel members involved in cell death. Plant Mol Biol. 2015;87(4–5):395–411.
Article
CAS
PubMed
Google Scholar
Miao Y, Laun T, Zimmermann P, Zentgraf U. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol. 2004;55(6):853–67.
Article
CAS
PubMed
Google Scholar
Cui X, Ma Z, Tian Q, et al. The relationship between floral organ development period and effective component content of Lonicera japonica. Chin Agric Sci Bull. 2018;34(4):71–5 In Chinese.
Google Scholar
Yang B, Guan Q, Tian J, Komatsu S. Transcriptomic and proteomic analyses of leaves from Clematis terniflora DC. under high level of ultraviolet-B irradiation followed by dark treatment. J Proteomics. 2017;150:323–40.
Article
CAS
PubMed
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics. 2009;25(14):1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6.
Article
CAS
PubMed
Google Scholar
Jin J, Tian F, Yang DC, Meng YQ, Kong L, Luo J, et al. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 2017;45(D1):D1040–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10(1):421.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Meth. 2008;5:621–8.
Article
CAS
Google Scholar
Howe EA, Sinha R, Schlauch D, Quackenbush J. RNA-Seq analysis in MeV. Bioinformatics. 2011;27(22):3209–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Du Z, Zhou X, Ling Y, Zhang Z, Su Z. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010;38(suppl_2):W64–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan X, Welti R, Wang X. Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography–electrospray tandem mass spectrometry. Phytochemistry. 2008;69(8):1773–81.
Article
CAS
PubMed
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1):248–54.
Article
CAS
PubMed
Google Scholar
Qu LJ, Zhu YX. Transcription factor families in Arabidopsis: major progress and outstanding issues for future research. Curr Opin Plant Biol. 2006;9(5):544–9.
Article
CAS
PubMed
Google Scholar
Wu ZY, Raven PH. Flora of China. Beijing: Science Press; 2011; vol.19.
DPM VL, DG L. Redox regulation in plant programmed cell death. Plant Cell Environ. 2012;35(2):234–44.
Article
CAS
Google Scholar
Gechev TS, Hille J. Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol. 2005;168(1):17–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi MZ, Xie DY. Biosynthesis and metabolic engineering of anthocyanins in Arabidopsis thaliana. Recent Pat Biotechnol. 2014;8(1):47–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Franco-Zorrilla JM, Solano R. Identification of plant transcription factor target sequences. Biochim Biophys Acta Gene Regul. Mech. 2017;1860(1):21–30.
Article
CAS
Google Scholar
Jin J, Zhang H, Kong L, Gao G, Luo J. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res. 2014;42(D1):D1182–7.
Article
CAS
PubMed
Google Scholar
Chao LM, Liu YQ, Chen DY, Xue XY, Mao YB, Chen XY. Arabidopsis transcription factors SPL1 and SPL12 confer plant thermotolerance at reproductive stage. Mol Plant. 2017;10(5):735–48.
Article
CAS
PubMed
Google Scholar
Gao MJ, Li X, Huang J, Gropp GM, Gjetvaj B, Lindsay DL, et al. SCARECROW-LIKE15 interacts with HISTONE DEACETYLASE19 and is essential for repressing the seed maturation programme. Nat Commun. 2015;6:7243.
Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development. 1999;126(18):4117–28.
CAS
PubMed
Google Scholar
Hong JC. Chapter 3 - general aspects of plant transcription factor families. In: Gonzalez DH, editor. Plant transcription factors. Boston: Academic Press; 2016. p. 35–56.
Chapter
Google Scholar
Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta. 2012;1819(2):86–96.
Article
CAS
PubMed
Google Scholar
Olsen AN, Ernst HA, Leggio LL, Skriver K. NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 2005;10(2):79–87.
Article
CAS
PubMed
Google Scholar
CM N. Chlorogenic acids and other cinnamates – nature, occurrence and dietary burden. J Sci Food Agric. 1999;79(3):362–72.
Article
Google Scholar
Yuan Y, Wang Z, Jiang C, Wang X, Huang L. Exploiting genes and functional diversity of chlorogenic acid and luteolin biosyntheses in Lonicera japonica and their substitutes. Gene. 2014;534(2):408–16.
Article
CAS
PubMed
Google Scholar
Zhang Y, Butelli E, Alseekh S, Tohge T, Rallapalli G, Luo J, et al. Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. Nat Commun. 2015;6:8635.
Article
CAS
PubMed
Google Scholar
Chezem WR, Clay NK. Regulation of plant secondary metabolism and associated specialized cell development by MYBs and bHLHs. Phytochemistry. 2016;131:26–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou M, Memelink J. Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnol Adv. 2016;34(4):441–9.
Article
PubMed
CAS
Google Scholar
Xu W, Grain D, Bobet S, Le Gourrierec J, Thévenin J, Kelemen Z, et al. Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB–bHLH–WDR complexes and their targets in Arabidopsis seed. New Phytol. 2014;202(1):132–44.
Article
CAS
PubMed
Google Scholar
Mehrtens F, Kranz H, Bednarek P, Weisshaar B. The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol. 2005;138(2):1083–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai YS, Shimoyamada Y, Nakayama M, Yamagishi M. Pigment accumulation and transcription of LhMYB12 and anthocyanin biosynthesis genes during flower development in the Asiatic hybrid lily (Lilium spp.). Plant Sci (Amsterdam, Neth). 2012;193-194:136–47.
Jung C, Shim JS, Seo JS, Lee HY, Kim CH, Choi YD, et al. Non-specific phytohormonal induction of AtMYB44 and suppression of jasmonate-responsive gene activation in Arabidopsis thaliana. Mol Cells. 2010;29(1):71–6.
Article
CAS
PubMed
Google Scholar
Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot. 2002;53(372):1331–41.
Article
CAS
PubMed
Google Scholar
Epple P, Mack AA, Morris VRF, Dangl JL. Antagonistic control of oxidative stress-induced cell death in Arabidopsis by two related, plant-specific zinc finger proteins. Proc Natl Acad Sci U S A. 2003;100(11):6831–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuriyama H, Fukuda H. Developmental programmed cell death in plants. Curr Opin Plant Biol. 2002;5(6):568–73.
Article
CAS
PubMed
Google Scholar
Rogers HJ. Programmed cell death in floral organs: how and why do flowers die? Ann Bot. 2006;97(3):309–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carol W, J.W. YT, D. SA, Vicky B-W, A. RJ. A molecular and structural characterization of senescing Arabidopsis siliques and comparison of transcriptional profiles with senescing petals and leaves. Plant J 2009;57(4):690–705.
Rogers HJ. Senescence-associated programmed cell death. In: Gunawardena AN, McCabe PF, editors. Plant programmed cell death. Cham: Springer International Publishing; 2015. p. 203–33.
Chapter
Google Scholar
Adamczyk BJ, Fernandez DE. MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiol. 2009;149(4):1713–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
E ZG, Zhang YP, Zhou JH, Wang L. Mini review roles of the bZIP gene family in rice. Genet Mol Res. 2014;13(2):3025–36.
Article
CAS
PubMed
Google Scholar
Feurtado JA, Huang D, Wicki-Stordeur L, Hemstock LE, Potentier MS, Tsang EWT, et al. The Arabidopsis C2H2 zinc finger INDETERMINATE DOMAIN1/ENHYDROUS promotes the transition to germination by regulating light and hormonal signaling during seed maturation. Plant Cell. 2011;23(5):1772–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Podzimska-Sroka D, O'Shea C, Gregersen PL, Skriver K. NAC transcription factors in senescence: from molecular structure to function in crops. Plants. 2015;4(3):412–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiaozhen H, Yansha L, Xiaoyan Z, Jianru Z, Shuhua Y. The Arabidopsis LSD1 gene plays an important role in the regulation of low temperature-dependent cell death. New Phytol. 2010;187(2):301–12.
Article
CAS
Google Scholar
Yongfeng G, Susheng G. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J. 2006;46(4):601–12.
Article
CAS
Google Scholar
Sangmin L, Joon SP, Hyo-Jun L, Chung-Mo P. A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis. Plant J. 2012;70(5):831–44.
Article
CAS
Google Scholar
Besseau S, Li J, Palva ET. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot. 2012;63(7):2667–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miao Y, Zentgraf U. The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell. 2007;19(3):819–30.
Article
CAS
PubMed
PubMed Central
Google Scholar