Ejeta G. The Striga scourge in Africa: a growing pandemic. In: Ejeta G, Gresel J, editors. Integrating new technologies for Striga control: towards ending the witch hunt. Singapore: World Scientific; 2007. p. 3–16.
Chapter
Google Scholar
Scholes JD, Press MC. Striga infestation of cereal crops – an unsolved problem in resource limited agriculture. Curr Opin Plant Biol. 2008;11(2):180–6.
Article
PubMed
Google Scholar
Spallek T, Mutuku M, Shirasu K. The genus Striga: a witch profile. Mol Plant Pathol. 2013;14(9):861–9.
Article
PubMed
PubMed Central
Google Scholar
Timko MP, Singh BB. Cowpea, a multifunctional legume. In: Moore PH, Ming R, editors. Genomics of tropical crop plants. New York: Springer New York; 2008. p. 227–58.
Chapter
Google Scholar
Matvienko M, Torres MJ, Yoder JI. Transcriptional responses in the hemiparasitic plant Triphysaria versicolor to host plant signals. Plant Physiol. 2001;127(1):272–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cardwell KF, Lane JA. Effect of soils, cropping system and host phenotype on incidence and severity of Striga gesnerioides on cowpea in West Africa. Agric Ecosyst Environ. 1995;53(3):253–62.
Article
Google Scholar
Bebawi FF, Eplee RE, Harris CE, Norris RS. Longevity of witchweed (Striga asiatica) seed. Weed Sci. 2017;32(4):494–7.
Google Scholar
Yoder JI. Host-plant recognition by parasitic Scrophulariaceae. Curr Opin Plant Biol. 2001;4(4):359–65.
Article
CAS
PubMed
Google Scholar
Sun Z, Matusova R, Bouwmeester H. Germination of Striga and chemical signaling involved: a target for control methods. In: Ejeta G, Gressel J, editors. Integrating new technologies for Striga control: towards ending the witch-hunt. Singapore: World Scientific; 2007. p. 47–60.
Chapter
Google Scholar
Kokla A, Melnyk CW. Developing a thief: haustoria formation in parasitic plants. Dev Biol. 2018;442(1):53–9.
Article
CAS
PubMed
Google Scholar
Kuijt J. The biology of parasitic flowering plants. Berkeley: University of California Press; 1969.
Google Scholar
dePamphilis CW, Palmer JD. Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature. 1990;348(6299):337–9.
Article
CAS
PubMed
Google Scholar
Wolfe KH, Morden CW, Palmer JD. Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci U S A. 1992;89(22):10648–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verkleij J, Janssen J, Pieterse A. A preliminary study on isoenzyme variation in Orobanche crenata and Orobanche aegyptiaca from Syria. In: ter Borg SJ, editor. Proceedings of a workshop on biology and control of Orobanche. Wageningen, Netherlands: Dept. of Vegetation Science, Plant Ecology and Weed Science, Agricultural University; 1986. p. 154–9.
Wolfe AD, Randle CP. Relationships within and among species of the holoparasitic genus Hyobanche (Orobanchaceae) inferred from ISSR banding patterns and nucleotide sequences. Syst Bot. 2001;26(1):120–30.
Google Scholar
Román B. Population diversity and dynamics of parasitic weeds. In: Joel DM, Gressel J, Musselman LJ, editors. Parasitic Orobanchaceae: parasitic mechanisms and control strategies. Berlin: Springer Berlin Heidelberg; 2013. p. 345–56.
Chapter
Google Scholar
Katzir N, Portnoy V, Tzuri G, Joel DM, Castejón-Muñoz M. Use of random amplified polymorphic DNA (RAPD) markers in the study of the parasitic weed Orobanche. Theor Appl Genet. 1996;93(3):367–72.
Article
CAS
PubMed
Google Scholar
Paran I, Gidoni D, Jacobsohn R. Variation between and within broomrape (Orobanche) species revealed by RAPD markers. Heredity. 1997;78:68–74.
Article
CAS
PubMed
Google Scholar
Young ND, Steiner KE, dePamphilis CW. Evolution of parasitism in the Scrophulariaceae/Orobanchaceae: plastid gene sequences refute an evolutionary transition series. Ann Mo Bot Gard. 1999;86(4):876–93.
Article
Google Scholar
Schneeweiss GM, Colwell A, Park J-M, Jang C-G, Stuessy TF. Phylogeny of holoparasitic Orobanche (Orobanchaceae) inferred from nuclear ITS sequences. Mol Phylogenet Evol. 2004;30(2):465–78.
Article
CAS
PubMed
Google Scholar
Bennett JR, Mathews S. Phylogeny of the parasitic plant family Orobanchaceae inferred from phytochrome A. Am J Bot. 2006;93(7):1039–51.
Article
CAS
PubMed
Google Scholar
Kusumoto D, Goldwasser Y, Xie X, Yoneyama K, Takeuchi Y, Yoneyama K. Resistance of red clover (Trifolium pratense) to the root parasitic plant Orobanche minor is activated by salicylate but not by jasmonate. Ann Bot. 2007;100(3):537–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swarbrick PJ, Huang K, Liu G, Slate J, Press MC, Scholes JD. Global patterns of gene expression in rice cultivars undergoing a susceptible or resistant interaction with the parasitic plant Striga hermonthica. New Phytol. 2008;179(2):515–29.
Article
CAS
PubMed
Google Scholar
Huang K, Mellor KE, Paul SN, Lawson MJ, Mackey AJ, Timko MP. Global changes in gene expression during compatible and incompatible interactions of cowpea (Vigna unguiculata L.) with the root parasitic angiosperm Striga gesnerioides. BMC Genomics. 2012;13(1):402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Torres MJ, Tomilov AA, Tomilova N, Reagan RL, Yoder JI. Pscroph, a parasitic plant EST database enriched for parasite associated transcripts. BMC Plant Biol. 2005;5(1):24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yoshida S, Ishida JK, Kamal NM, Ali AM, Namba S, Shirasu K. A full-length enriched cDNA library and expressed sequence tag analysis of the parasitic weed, Striga hermonthica. BMC Plant Biol. 2010;10(1):55.
Article
PubMed
PubMed Central
CAS
Google Scholar
Westwood JH, Yoder JI, Timko MP, dePamphilis CW. The evolution of parasitism in plants. Trends Plant Sci. 2010;15(4):227–35.
Article
CAS
PubMed
Google Scholar
Westwood JH, dePamphilis CW, Das M, Fernández-Aparicio M, Honaas LA, Timko MP, et al. The parasitic plant genome Project: new tools for understanding the biology of Orobanche and Striga. Weed Sci. 2012;60(2):295–306.
Article
CAS
Google Scholar
Westwood JH, dePamphilis CW, Timko MP, Yoder JI Parasitic Plant Genome Project http://ppgp.huck.psu.edu/. Accessed 12 Aug 2017.
Wickett NJ, Honaas LA, Wafula EK, Das M, Huang K, Wu B, et al. Transcriptomes of the parasitic plant family Orobanchaceae reveal surprising conservation of chlorophyll synthesis. Curr Biol. 2011;21(24):2098–104.
Article
CAS
PubMed
Google Scholar
Yang Z, Wafula EK, Honaas LA, Zhang H, Das M, Fernandez-Aparicio M, et al. Comparative transcriptome analyses reveal core parasitism genes and suggest gene duplication and repurposing as sources of structural novelty. Mol Biol Evol. 2015;32(3):767–90.
Article
CAS
PubMed
Google Scholar
Honaas LA, Wafula EK, Yang Z, Der JP, Wickett NJ, Altman NS, et al. Functional genomics of a generalist parasitic plant: laser microdissection of host-parasite interface reveals host-specific patterns of parasite gene expression. BMC Plant Biol. 2013;13(1):9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams LE, Lemoine R, Sauer N. Sugar transporters in higher plants–a diversity of roles and complex regulation. Trends Plant Sci. 2000;5(7):283–90.
Article
CAS
PubMed
Google Scholar
Gamas P, de Carvalho Niebel F, Lescure N, Cullimore JV. Use of a subtractive hybridization approach to identify new Medicago truncatula genes induced during root nodule development. Mol Plant Microbe Interact. 1996;9(4):233–42.
Article
CAS
PubMed
Google Scholar
Chen L-Q, Qu X-Q, Hou B-H, Sosso D, Osorio S, Fernie AR, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science. 2012;335(6065):207–11.
Article
CAS
PubMed
Google Scholar
Chen L-Q, Hou B-H, Lalonde S, Takanaga H, Hartung ML, Qu X-Q, et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature. 2010;468:527–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doidy J, Grace E, Kühn C, Simon-Plas F, Casieri L, Wipf D. Sugar transporters in plants and in their interactions with fungi. Trends Plant Sci. 2012;17(7):413–22.
Article
CAS
PubMed
Google Scholar
Reuscher S, Akiyama M, Yasuda T, Makino H, Aoki K, Shibata D, et al. The sugar transporter inventory of tomato: genome-wide identification and expression analysis. Plant Cell Physiol. 2014;55(6):1123–41.
Article
CAS
PubMed
Google Scholar
Reddy VS, Shlykov MA, Castillo R, Sun EI, Saier MH. The major facilitator superfamily (MFS) revisited. FEBS J. 2012;279(11):2022–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kiyosue T, Abe H, Yamaguchi-Shinozaki K, Shinozaki K. ERD6, a cDNA clone for an early dehydration-induced gene of Arabidopsis, encodes a putative sugar transporter. Biochim Biophys Acta Biomembr. 1998;1370(2):187–91.
Article
CAS
Google Scholar
Lalonde S, Frommer W. SUT sucrose and MST monosaccharide transporter inventory of the Selaginella genome. Front Plant Sci. 2012;3:24.
Article
PubMed
PubMed Central
Google Scholar
Schneider S, Beyhl D, Hedrich R, Sauer N. Functional and physiological characterization of Arabidopsis INOSITOL TRANSPORTER1, a novel tonoplast-localized TRANSPORTER for myo-inositol. Plant Cell. 2008;20(4):1073–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schneider S, Schneidereit A, Udvardi P, Hammes U, Gramann M, Dietrich P, et al. Arabidopsis INOSITOL TRANSPORTER2 mediates H+ symport of different inositol epimers and derivatives across the plasma membrane. Plant Physiol. 2007;145(4):1395–407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wormit A, Trentmann O, Feifer I, Lohr C, Tjaden J, Meyer S, et al. Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport. Plant Cell. 2006;18(12):3476–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Büttner M. The Arabidopsis sugar transporter (AtSTP) family: an update. Plant Biol. 2010;12:35–41.
Article
PubMed
CAS
Google Scholar
Kühn C, Grof CPL. Sucrose transporters of higher plants. Curr Opin Plant Biol. 2010;13(3):287–97.
Article
CAS
Google Scholar
Liesche J, Krügel U, He H, Chincinska I, Hackel A, Kühn C. Sucrose transporter regulation at the transcriptional, post-transcriptional and post-translational level. J Plant Physiol. 2011;168(12):1426–33.
Article
CAS
PubMed
Google Scholar
Bürkle L, Hibberd JM, Quick WP, Kühn C, Hirner B, Frommer WB. The H+-sucrose cotransporter NtSUT1 is essential for sugar export from tobacco leaves. Plant Physiol. 1998;118(1):59–68.
Article
PubMed
PubMed Central
Google Scholar
Slewinski TL, Garg A, Johal GS, Braun DM. Maize SUT1 functions in phloem loading. Plant Signal Behav. 2010;5(6):687–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Milne RJ, Grof CPL, Patrick JW. Mechanisms of phloem unloading: shaped by cellular pathways, their conductances and sink function. Curr Opin Plant Biol. 2018;43:8–15.
Article
CAS
PubMed
Google Scholar
Barker L, Kühn C, Weise A, Schulz A, Gebhardt C, Hirner B, et al. SUT2, a putative sucrose sensor in sieve elements. Plant Cell. 2000;12(7):1153–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sauer N. Molecular physiology of higher plant sucrose transporters. FEBS Lett. 2007;581(12):2309–17.
Article
CAS
PubMed
Google Scholar
Weise A, Barker L, Kühn C, Lalonde S, Buschmann H, Frommer WB, et al. A new subfamily of sucrose transporters, SUT4, with low affinity/high capacity localized in enucleate sieve elements of plants. Plant Cell. 2000;12(8):1345–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frost CJ, Nyamdari B, Tsai C-J, Harding SA. The tonoplast-localized sucrose transporter in Populus (PtaSUT4) regulates whole-plant water relations, responses to water stress, and photosynthesis. PLoS One. 2012;7(8):e44467.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chincinska I, Gier K, Krügel U, Liesche J, He H, Grimm B, et al. Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production. Front Plant Sci. 2013;4:26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flemetakis E, Dimou M, Cotzur D, Efrose RC, Aivalakis G, Colebatch G, et al. A sucrose transporter, LjSUT4, is up-regulated during Lotus japonicus nodule development. J Exp Bot. 2003;54(388):1789–91.
Article
CAS
PubMed
Google Scholar
Durand M, Mainson D, Porcheron B, Maurousset L, Lemoine R, Pourtau N. Carbon source–sink relationship in Arabidopsis thaliana: the role of sucrose transporters. Planta. 2018;247(3):587–611.
Article
CAS
PubMed
Google Scholar
Peng D, Gu X, Xue L-J, Leebens-Mack JH, Tsai C-J. Bayesian phylogeny of sucrose transporters: ancient origins, differential expansion and convergent evolution in monocots and dicots. Front Plant Sci. 2014;5:615.
PubMed
PubMed Central
Google Scholar
Xuan YH, Hu YB, Chen L-Q, Sosso D, Ducat DC, Hou B-H, et al. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family. Proc Natl Acad Sci. 2013;110(39):E3685–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conserved Domains Database (CDD) and resources. National Center for biotechnology information, Bethesda. 2017. https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml. Accessed 1 Dec 2017.
Ponting CP, Mott R, Bork P, Copley RR. Novel protein domains and repeats in Drosophila melanogaster: insights into structure, function, and evolution. Genome Res. 2001;11(12):1996–2008.
Article
CAS
PubMed
Google Scholar
Bush DR. Sugar transporters in plant biology. Curr Opin Plant Biol. 1999;2(3):187–91.
Article
CAS
PubMed
Google Scholar
Lingner U, Münch S, Deising HB, Sauer N. Hexose transporters of a hemibiotrophic plant pathogen: functional variations and regulatory differences at different stages of infection. J Biol Chem. 2011;286(23):20913–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L-Q. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytol. 2014;201(4):1150–5.
Article
CAS
PubMed
Google Scholar
Péron T, Candat A, Montiel G, Veronesi C, Macherel D, Delavault P, et al. New insights into phloem unloading and expression of sucrose transporters in vegetative sinks of the parasitic plant Phelipanche ramosa L. (Pomel). Front Plant Sci. 2017;7:2048.
Article
PubMed
PubMed Central
Google Scholar
Olmstead RG, de Pamphilis CW, Wolfe AD, Young ND, Elisons WJ, Reeves PA. Disintegration of the Scrophulariaceae. Am J Bot. 2001;88(2):348–61.
Article
CAS
PubMed
Google Scholar
Johnson DA, Thomas MA. The monosaccharide transporter gene family in Arabidopsis and rice: a history of duplications, adaptive evolution, and functional divergence. Mol Biol Evol. 2007;24(11):2412–23.
Article
CAS
PubMed
Google Scholar
Yuan M, Wang S. Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms. Mol Plant. 2013;6(3):665–74.
Article
CAS
PubMed
Google Scholar
Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16(1):157.
Article
PubMed
PubMed Central
CAS
Google Scholar
Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Čech M, et al. The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018;46(W1):W537–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bromham L, Cowman PF, Lanfear R. Parasitic plants have increased rates of molecular evolution across all three genomes. BMC Evol Biol. 2013;13(1):126.
Article
PubMed
PubMed Central
Google Scholar
Těšitel J, Plavcová L, Cameron DD. Interactions between hemiparasitic plants and their hosts. Plant Signal Behav. 2010;5(9):1072–6.
Article
PubMed
PubMed Central
Google Scholar
Yang Z, Zhang Y, Wafula EK, Honaas LA, Ralph PE, Jones S, et al. Horizontal gene transfer is more frequent with increased heterotrophy and contributes to parasite adaptation. Proc Natl Acad Sci. 2016;113(45):E7010–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshida S, Maruyama S, Nozaki H, Shirasu K. Horizontal gene transfer by the parasitic plant Striga hermonthica. Science. 2010;328(5982):1128.
Article
CAS
PubMed
Google Scholar
Zhang Y, Fernandez-Aparicio M, Wafula EK, Das M, Jiao Y, Wickett NJ, et al. Evolution of a horizontally acquired legume gene, albumin 1, in the parasitic plant Phelipanche aegyptiaca and related species. BMC Evol Biol. 2013;13(1):48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bezrutczyk M, Hartwig T, Horschman M, Char SN, Yang J, Yang B, et al. Impaired phloem loading in zmsweet13 a, b, c sucrose transporter triple knock-out mutants in Zea mays. New Phytol. 2018;218(2):594–603.
Article
CAS
PubMed
Google Scholar
Büttner M. The monosaccharide transporter (−like) gene family in Arabidopsis. FEBS Lett. 2007;581(12):2318–24.
Article
PubMed
CAS
Google Scholar
Weber A, Servaites JC, Geiger DR, Kofler H, Hille D, Gröner F, et al. Identification, purification, and molecular cloning of a putative plastidic glucose translocator. Plant Cell. 2000;12(5):787–801.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nativ N, Hacham Y, Hershenhorn J, Dor E, Amir R. Metabolic investigation of Phelipanche aegyptiaca reveals significant changes during developmental stages and in its different organs. Front Plant Sci. 2017;8:491.
Article
PubMed
PubMed Central
Google Scholar
Slewinski TL. Diverse functional roles of monosaccharide transporters and their homologs in vascular plants: a physiological perspective. Mol Plant. 2011;4(4):641–62.
Article
CAS
PubMed
Google Scholar
Richter A, Popp M. The physiological importance of accumulation of cyclitols in Viscum album L.*. New Phytol. 1992;121(3):431–8.
Article
CAS
PubMed
Google Scholar
Hacham Y, Hershenhorn J, Dor E, Amir R. Primary metabolic profiling of Egyptian broomrape (Phelipanche aegyptiaca) compared to its host tomato roots. J Plant Physiol. 2016;205:11–9.
Article
CAS
PubMed
Google Scholar
Noiraud N, Maurousset L, Lemoine R. Transport of polyols in higher plants. Plant Physiol Biochem. 2001;39(9):717–28.
Article
CAS
Google Scholar
Mäkinen KK. Söderling E. a quantitative study of mannitol, sorbitol, xylitol, and xylose in wild berries and commercial fruits. J Food Sci. 1980;45(2):367–71.
Article
Google Scholar
Aluri S, Büttner M. Identification and functional expression of the Arabidopsis thaliana vacuolar glucose transporter 1 and its role in seed germination and flowering. Proc Natl Acad Sci. 2007;104(7):2537–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kühn C, Hajirezaei M-R, Fernie AR, Roessner-Tunali U, Czechowski T, Hirner B, et al. The sucrose transporter StSUT1 localizes to sieve elements in potato tuber phloem and influences tuber physiology and development. Plant Physiol. 2003;131(1):102–13.
Article
PubMed
PubMed Central
CAS
Google Scholar
Westwood JH, Roney JK, Khatibi PA, Stromberg VK. RNA translocation between parasitic plants and their hosts. Pest Manag Sci. 2009;65(5):533–9.
Article
CAS
PubMed
Google Scholar
Shahid S, Kim G, Johnson NR, Wafula E, Wang F, Coruh C, et al. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature. 2018;553:82–5.
Article
CAS
PubMed
Google Scholar
Yoder JI, Gunathilake P, Wu B, Tomilova N, Tomilov AA. Engineering host resistance against parasitic weeds with RNA interference. Pest Manag Sci. 2009;65(5):460–6.
Article
CAS
PubMed
Google Scholar
Frommer WB. Sucrose transporters and methods of generating pathogen-resistant plants. In: Google Patents; 2014.
Google Scholar
Bock R, Jiang Z, Heckel DG, and Khan SA. “Plant protection from a pest or pathogen by expression of double-stranded RNAs in the plastid.” U.S. Patent Application 15/537,410, filed November 30, 2017.
Google Scholar
Fernández-Aparicio M, Reboud X, Gibot-Leclerc S. Broomrape Weeds. Underground mechanisms of parasitism and associated strategies for their control: a review. Front Plant Sci. 2016;7:135.
PubMed
PubMed Central
Google Scholar
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37:W202–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rolland F, Baena-Gonzalez E, Sheen J. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol. 2006;57(1):675–709.
Article
CAS
PubMed
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf. 2011;12(1):323.
Article
CAS
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9:357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
NCBI Protein Database. National Center for biotechnology information, Bethesda. 2017. http://www.ncbi.nlm.nih.gov/protein. Accessed 1 Jun 2017.
NCBI Nucleotide Database. National Center for biotechnology information, Bethesda. 2017. http://www.ncbi.nlm.nih.gov/nucleotide. Accessed 1 Jun 2017.
NCBI EST Database. National Center for biotechnology information, Bethesda. 2017. http://www.ncbi.nlm.nih.gov/est. Accessed 1 Jun 2017.
Hellsten U, Wright KM, Jenkins J, Shu S, Yuan Y, Wessler SR, et al. Fine-scale variation in meiotic recombination in Mimulus inferred from population shotgun sequencing. Proc Natl Acad Sci. 2013;110(48):19478–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hartmann U, Vision T, Phillips, J. MIMULUS Project Home. www.mimulusevolution.org/ (2010). Accessed 4 May 2017.
Phytozome v12.1. Department of energy, Office of Science, Washington, DC. 2017. https://phytozome.jgi.doe.gov/pz/portal.html Accessed 12 Aug 2017.
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012;40:D1178–86.
Article
CAS
PubMed
Google Scholar
Lipman D, Pearson W. Rapid and sensitive protein similarity searches. Science. 1985;227(4693):1435–41.
Article
CAS
PubMed
Google Scholar
Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proc Natl Acad Sci. 1988;85(8):2444–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pearson WR. UVA FASTA Server. https://fasta.bioch.virginia.edu/fasta_www2/fasta_list2.shtml. Accessed 3 Jun 2017.
Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C, et al. The Bioperl toolkit: Perl modules for the life sciences. Genome Res. 2002;12(10):1611–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fields CJ. BioPerl 1.7.1. http://search.cpan.org/~cjfields/BioPerl-1.007001/. Accessed 3 Dec 2016.
Misra VA, Wang Y, Timko MP. A compendium of transcription factor and transcriptionally active protein coding gene families in cowpea (Vigna unguiculata L.). BMC Genomics. 2017;18(1):898.
Article
PubMed
PubMed Central
CAS
Google Scholar
Somervuo P, Holm L. SANSparallel: interactive homology search against Uniprot. Nucleic Acids Res. 2015;43(W1):W24–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holm L. SANSparallel. http://ekhidna2.biocenter.helsinki.fi/sans/. Accessed on 4 May 2017.
The Uniprot Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45(D1):D158–69.
Article
CAS
Google Scholar
MEME (Multiple Em for Motif Elicitation). http://meme-suite.org/tools/meme. Accessed on 12 Aug 2017.
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katoh K: MAFFT v7.312. http://mafft.cbrc.jp/alignment/software/ (2013). Accessed on 1 Nov 2017.
Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, dePamphilis C, et al. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science. 2011;332(6032):960–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
The Amborella Genome Project. The Amborella genome and the evolution of flowering plants. Science. 2013;342(6165):1241089.
Article
CAS
Google Scholar
Chen F, Mackey AJ, Stoeckert CJ Jr, Roos DS. OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res. 2006;34(suppl_1):D363–8.
Article
CAS
PubMed
Google Scholar
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Larkin MA, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947–8.
Article
CAS
PubMed
Google Scholar
Marchler-Bauer A, Derbyshire M, Gonzales N, Lu S, Chitsaz F, Geer L, Geer R, He J, Gwadz M, Hurwitz D. CDD: NCBI's conserved domain database. Nucleic Acids Res. 2015;43:D222–6.
Article
CAS
PubMed
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
The Exelexis Lab. RAxML version 8.2.11. https://sco.h-its.org/exelixis/web/software/raxml/index.html. (2017) Accessed on 12 Aug 2017.
Hurvich CM, Tsai C-L. Regression and time series model selection in small samples. Biometrika. 1989;76(2):297–307.
Article
Google Scholar
Letunic I, Bork P. Interactive tree of life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2007;23(1):127–8.
Article
CAS
PubMed
Google Scholar
Interactive Tree Of Life (iTOL) version 4. http://itol.embl.de. Accessed on 16 Dec 2017.