Buchanan-Wollaston V, Ainsworth C. Leaf senescence in Brassica napus: cloning of senescence related genes by subtractive hybridisation. Plant Mol Biol. 1997;33(5):821–34.
Article
CAS
PubMed
Google Scholar
Lim PO, Kim HJ, Gil Nam H. Leaf senescence. Annu Rev Plant Biol. 2007;58:115–36.
Article
CAS
PubMed
Google Scholar
Besseau S, Li J, Palva ET. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot. 2012;63(7):2667–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miao Y, Laun T, Zimmermann P, Zentgraf U. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol. 2004;55(6):853–67.
Article
CAS
PubMed
Google Scholar
Jing S, Zhou X, Song Y, Yu D. Heterologous expression of OsWRKY23 gene enhances pathogen defense and dark-induced leaf senescence in Arabidopsis. Plant Growth Regul. 2009;58(2):181–90.
Article
CAS
Google Scholar
Han M, Kim C-Y, Lee J, Lee S-K, Jeon J-S. OsWRKY42 represses OsMT1d and induces reactive oxygen species and leaf senescence in rice. Molecules and cells. 2014;37(7):532.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ricachenevsky FK, Sperotto RA, Menguer PK, Fett JP. Identification of Fe-excess-induced genes in rice shoots reveals a WRKY transcription factor responsive to Fe, drought and senescence. Mol Biol Rep. 2010;37(8):3735–45.
Article
CAS
PubMed
Google Scholar
Robatzek S, Somssich IE. A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence-and defence-related processes. Plant J. 2001;28(2):123–33.
Article
CAS
PubMed
Google Scholar
Thomas H, Ougham H. The stay-green trait. J Exp Bot. 2014;65(14):3889–900.
Article
CAS
PubMed
Google Scholar
Chen Y, Qiu K, Kuai B, Ding Y. Identification of an NAP-like transcription factor BeNAC1 regulating leaf senescence in bamboo (Bambusa emeiensis ‘Viridiflavus’). Physiol Plant. 2011;142(4):361–71.
Article
CAS
PubMed
Google Scholar
X-r T, R-k Z, Chen X, Wu X-j, Ming F. Characterization of OsNAP from Oryza sativa L. and its application in molecular breeding. J Fudan University (Natural Science). 2012;51:507–14.
Google Scholar
Zhang Y, Cao Y, Shao Q, Wang L, Wang H, Li J, Li H. Regulating effect of ZmNAP gene on anti-senescence and yield traits of maize. J Henan Agric Sci. 2012;41:19–24.
Google Scholar
Weaver LM, Gan S, Quirino B, Amasino RM. A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol Biol. 1998;37(3):455–69.
Article
CAS
PubMed
Google Scholar
Distelfeld A, Avni R, Fischer AM. Senescence, nutrient remobilization, and yield in wheat and barley. J Exp Bot. 2014;65(14):3783–98.
Article
PubMed
Google Scholar
Gregersen PL, Holm PB. Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). Plant Biotechnol J. 2007;5(1):192–206.
Article
CAS
PubMed
Google Scholar
Gregersen P, Holm P, Krupinska K. Leaf senescence and nutrient remobilisation in barley and wheat. Plant Biol. 2008;10(s1):37–49.
Article
CAS
PubMed
Google Scholar
Parrott DL, McInnerney K, Feller U, Fischer AM. Steam-girdling of barley (Hordeum vulgare) leaves leads to carbohydrate accumulation and accelerated leaf senescence, facilitating transcriptomic analysis of senescence-associated genes. New Phytol. 2007;176(1):56–69.
Article
CAS
PubMed
Google Scholar
Becker W, Apel K. Differences in gene expression between natural and artificially induced leaf senescence. Planta. 1993;189(1):74–9.
Article
CAS
Google Scholar
Krupinska K, Haussühl K, Schäfer A, van der Kooij TA, Leckband G, Lörz H, Falk J. A novel nucleus-targeted protein is expressed in barley leaves during senescence and pathogen infection. Plant Physiol. 2002;130(3):1172–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Humbeck K, Quast S, Krupinska K. Functional and molecular changes in the photosynthetic apparatus during senescence of flag leaves from field-grown barley plants. Plant Cell Environ. 1996;19(3):337–44.
Article
CAS
Google Scholar
Kleber-Janke T, Krupinska K. Isolation of cDNA clones for genes showing enhanced expression in barley leaves during dark-induced senescence as well as during senescence under field conditions. Planta. 1997;203(3):332–40.
Article
CAS
PubMed
Google Scholar
Fischer-Kilbienski I, Miao Y, Roitsch T, Zschiesche W, Humbeck K, Krupinska K. Nuclear targeted AtS40 modulates senescence associated gene expression in Arabidopsis thaliana during natural development and in darkness. Plant Mol Biol. 2010;73(4–5):379–90.
Article
CAS
PubMed
Google Scholar
Oh SA, Lee SY, Chung IK, Lee C-H, Nam HG. A senescence-associated gene of Arabidopsis thaliana is distinctively regulated during natural and artificially induced leaf senescence. Plant Mol Biol. 1996;30(4):739–54.
Article
CAS
PubMed
Google Scholar
Jehanzeb M, Zheng X, Miao Y. The role of the S40 gene family in leaf senescence. Int J Mol Sci. 2017;18(10):2152.
Article
CAS
PubMed Central
Google Scholar
Krupinska K, Dähnhardt D, Fischer-Kilbienski I, Kucharewicz W, Scharrenberg C, Trösch M, Buck F. Identification of WHIRLY1 as a factor binding to the promoter of the stress-and senescence-associated gene HvS40. J Plant Growth Regul. 2014;33(1):91–105.
Article
CAS
Google Scholar
Eulgem T, Rushton PJ, Robatzek S, Somssich IE. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 2000;5(5):199–206.
Article
CAS
PubMed
Google Scholar
Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell. 2003;15(1):63–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yanagisawa S, Schmidt RJ. Diversity and similarity among recognition sequences of Dof transcription factors. Plant J. 1999;17(2):209–14.
Article
CAS
PubMed
Google Scholar
Yang T, Poovaiah B. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J Biol Chem. 2002;277(47):45049–58.
Article
CAS
PubMed
Google Scholar
Busk PK, Pages M. Regulation of abscisic acid-induced transcription. Plant Mol Biol. 1998;37(3):425–35.
Article
CAS
PubMed
Google Scholar
Suzuki M, Ketterling MG, McCarty DR. Quantitative statistical analysis of cis-regulatory sequences in ABA/VP1- and CBF/DREB1-regulated genes of Arabidopsis. Plant Physiol. 2005;139(1):437–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang C, Iu B, Singh J. Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol. 1996;30(3):679–84.
Article
CAS
PubMed
Google Scholar
Krupinska K, Dahnhardt D, Fischerkilbienski I, Kucharewicz W, Scharrenberg C, Trosch M, Buck F. Identification of WHIRLY1 as a factor binding to the promoter of the stress- and senescence-associated gene HvS40. J Plant Growth Regul. 2014;33(1):91–105.
Article
CAS
Google Scholar
Ay N, Janack B, Fischer A, Reuter G, Humbeck K. Alterations of histone modifications at the senescence-associated gene HvS40 in barley during senescence. Plant Mol Biol. 2015;89(1–2):127–41.
Article
CAS
PubMed
Google Scholar
Desveaux D, Després C, Joyeux A, Subramaniam R, Brisson N. PBF-2 is a novel single-stranded DNA binding factor implicated in PR-10a gene activation in potato. Plant Cell. 2000;12(8):1477–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Desveaux D, Subramaniam R, Despres C, Mess JN, Levesque C, Fobert PR, Dangl JL, Brisson N. A “Whirly” transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis. Dev Cell. 2004;6(2):229–40.
Article
CAS
PubMed
Google Scholar
Waese J, Fan J, Pasha A, Yu H, Fucile G, Shi R, Cumming M, Kelley LA, Sternberg MJ, Krishnakumar V, et al. ePlant: visualizing and exploring multiple levels of data for hypothesis generation in plant biology. Plant Cell. 2017;29(8):1806–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshida S. Fundamentals of rice crop science. Intrice Resinstlos Ba Os. 1981.
Liu L, Xu W, Hu X, Liu H, Lin Y. W-box and G-box elements play important roles in early senescence of rice flag leaf. Sci Rep. 2016;6:20881.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee RH, Wang CH, Huang LT, Chen SCG. Leaf senescence in rice plants: cloning and characterization of senescence up-regulated genes. J Exp Bot. 2001;52(358):1117–21.
Article
CAS
PubMed
Google Scholar
Egli D, Leggett J, Duncan W. Influence of N stress on leaf senescence and N redistribution in soybeans. Agron J. 1978;70(1):43–7.
Article
CAS
Google Scholar
Schildhauer J, Wiedemuth K, Humbeck K. Supply of nitrogen can reverse senescence processes and affect expression of genes coding for plastidic glutamine synthetase and lysine-ketoglutarate reductase/saccharopine dehydrogenase. Plant Biol. 2008;10(s1):76–84.
Article
CAS
PubMed
Google Scholar
Gregersen PL, Culetic A, Boschian L, Krupinska K. Plant senescence and crop productivity. Plant Mol Biol. 2013;82(6):603–22.
Article
CAS
PubMed
Google Scholar
Masclaux-Daubresse C, Reisdorf-Cren M, Orsel M. Leaf nitrogen remobilisation for plant development and grain filling. Plant Biol (Stuttg). 2008;10(Suppl 1):23–36.
Article
CAS
Google Scholar
Guo Y, Gan S. Leaf senescence: signals, execution, and regulation. Curr Top Dev Biol. 2005;71:83–112.
Article
CAS
PubMed
Google Scholar
Khan M, Rozhon W, Poppenberger B. The role of hormones in the aging of plants - a mini-review. Gerontology. 2014;60(1):49–55.
Article
CAS
PubMed
Google Scholar
Jibran R, A Hunter D, P Dijkwel P. Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Mol Biol. 2013;82(6):547–61.
Article
CAS
PubMed
Google Scholar
Liang C, Wang Y, Zhu Y, Tang J, Hu B, Liu L, Ou S, Wu H, Sun X, Chu J. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci. 2014;111(27):10013–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hörtensteiner S. Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci. 2009;14(3):155–62.
Article
CAS
PubMed
Google Scholar
Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell. 2007;19(4):1362–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morita R, Sato Y, Masuda Y, Nishimura M, Kusaba M. Defect in non-yellow coloring 3, an α/β hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J. 2009;59(6):940–52.
Article
CAS
PubMed
Google Scholar
Kim JI, Murphy AS, Baek D, Lee SW, Yun DJ, Bressan RA, Narasimhan ML. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. J Exp Bot. 2011;62(11):3981–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development. 2005;132(20):4563–74.
Article
CAS
PubMed
Google Scholar
Lim PO, Lee IC, Kim J, Kim HJ, Ryu JS, Woo HR, Nam HG. Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity. J Exp Bot. 2010;61(5):1419–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hou K, Wu W, Gan SS. SAUR36, a small auxin up RNA gene, is involved in the promotion of leaf senescence in Arabidopsis. Plant Physiol. 2013;161(2):1002–9.
Article
CAS
PubMed
Google Scholar
Xu F, Meng T, Li P, Yu Y, Cui Y, Wang Y, Gong Q, Wang NN. A soybean dual-specificity kinase, GmSARK, and its Arabidopsis homolog, AtSARK, regulate leaf senescence through synergistic actions of auxin and ethylene. Plant Physiol. 2011;157(4):2131–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robert-Seilaniantz A, Grant M, Jones JD. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol. 2011;49:317–43.
Article
CAS
PubMed
Google Scholar
Kazan K, Lyons R. Intervention of Phytohormone pathways by pathogen effectors. Plant Cell. 2014;26(6):2285–309.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaneda T, Taga Y, Takai R, Iwano M, Matsui H, Takayama S, Isogai A, Che FS. The transcription factor OsNAC4 is a key positive regulator of plant hypersensitive cell death. EMBO J. 2009;28(7):926–36.
Article
PubMed
PubMed Central
Google Scholar
Shimono M, Sugano S, Nakayama A, Jiang C-J, Ono K, Toki S, Takatsuji H. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell. 2007;19(6):2064–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swinburne IA, Silver PA. Intron delays and transcriptional timing during development. Dev Cell. 2008;14(3):324–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeffares DC, Penkett CJ, Bahler J. Rapidly regulated genes are intron poor. Trends Genet. 2008;24(8):375–8.
Article
CAS
PubMed
Google Scholar
Chorev M, Carmel L. The function of introns. Front Genet. 2012;3:55.
Article
PubMed
PubMed Central
Google Scholar
Liang Y, Xiong Z, Zheng J, Xu D, Zhu Z, Xiang J, Gan J, Raboanatahiry N, Yin Y, Li M. Genome-wide identification, structural analysis and new insights into late embryogenesis abundant (LEA) gene family formation pattern in Brassica napus. Sci Rep. 2016;6:24265.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie DW, Wang XN, Fu LS, Sun J, Zheng W, Li ZF. Identification of the trehalose-6-phosphate synthase gene family in winter wheat and expression analysis under conditions of freezing stress. J Genet. 2015;94(1):55–65.
Article
CAS
PubMed
Google Scholar
Patil A, Nakamura H. Disordered domains and high surface charge confer hubs with the ability to interact with multiple proteins in interaction networks. FEBS Lett. 2006;580(8):2041–5.
Article
CAS
PubMed
Google Scholar
Ambawat S, Sharma P, Yadav NR, Yadav RC. MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants. 2013;19(3):307–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boter M, Ruiz-Rivero O, Abdeen A, Prat S. Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev. 2004;18(13):1577–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le Hir R, Bellini C. The plant-specific dof transcription factors family: new players involved in vascular system development and functioning in Arabidopsis. Front Plant Sci. 2013;4:164.
PubMed
PubMed Central
Google Scholar
Phukan UJ, Jeena GS, Shukla RK. WRKY transcription factors: molecular regulation and stress responses in plants. Front Plant Sci. 2016;7:760.
Article
PubMed
PubMed Central
Google Scholar
Miao Y, Jiang J, Ren Y, Zhao Z. The single-stranded DNA-binding protein WHIRLY1 represses WRKY53 expression and delays leaf senescence in a developmental stage-dependent manner in Arabidopsis. Plant Physiol. 2013;163(2):746–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Cai J, Jiang D, Liu F, Dai T, Cao W. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. J Plant Physiol. 2011;168(6):585–93.
Article
CAS
PubMed
Google Scholar
Hafsi M, Mechmeche W, Bouamama L, Djekoune A, Zaharieva M, Monneveux P. Flag leaf senescence, as evaluated by numerical image analysis, and its relationship with yield under drought in durum wheat. J Agron Crop Sci. 2000;185(4):275–80.
Article
Google Scholar
Liu L, Zhou Y, Zhou G, Ye R, Zhao L, Li X, Lin Y. Identification of early senescence-associated genes in rice flag leaves. Plant Mol Biol. 2008;67(1–2):37–55.
Article
CAS
PubMed
Google Scholar
Noh YS, Amasino RM. Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Mol Biol. 1999;41(2):181–94.
Article
CAS
PubMed
Google Scholar
Jiang Y, Liang G, Yang S, Yu D. Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. Plant Cell. 2014;26(1):230–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Otegui MS, Noh YS, Martinez DE, Vila Petroff MG, Staehelin LA, Amasino RM, Guiamet JJ. Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. Plant J. 2005;41(6):831–44.
Article
CAS
PubMed
Google Scholar
Li Z, Peng J, Wen X, Guo H. Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of Arabidopsis leaf senescence. J Integr Plant Biol. 2012;54(8):526–39.
Article
CAS
PubMed
Google Scholar
Cai CZ, Han LY, Ji ZL, Chen X, Chen YZ. SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Res. 2003;31(13):3692–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li YH, Xu JY, Tao L, Li XF, Li S, Zeng X, Chen SY, Zhang P, Qin C, Zhang C, et al. SVM-Prot 2016: a web-server for machine learning prediction of protein functional families from sequence irrespective of similarity. PLoS One. 2016;11(8):e0155290.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou Y, Huang W, Liu L, Chen T, Zhou F, Lin Y. Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence. BMC Plant Biol. 2013;13(1):132.
Article
CAS
PubMed
PubMed Central
Google Scholar
El Mannai Y, Akabane K, Hiratsu K, Satoh-Nagasawa N, Wabiko H. The NAC transcription factor gene OsY37 (ONAC011) promotes leaf senescence and accelerates heading time in Rice. Int J Mol Sci. 2017;18(10):2165.
Article
CAS
PubMed Central
Google Scholar
Mao C, Ding W, Wu Y, Yu J, He X, Shou H, Wu P. Overexpression of a NAC-domain protein promotes shoot branching in rice. New Phytol. 2007;176(2):288–98.
Article
CAS
PubMed
Google Scholar
Mao C, Lu S, Lv B, Zhang B, Shen J, He J, Luo L, Xi D, Chen X, Ming F. A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiol. 2017;174(3):1747–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods. 2011;7(1):30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sambrook J, Maccallum P, Russel D: Molecular cloning: A laboratory manual, Cold Springs Harbour Press, NY. In.: ISBN 0–87969–577-3; 2001.