Pichersky E, Raguso RA. Why do plants produce so many terpenoid compounds? New Phytol; 2016.
Google Scholar
Tholl D. Biosynthesis and biological functions of terpenoids in plants. Adv Biochem Eng Biot. 2015;148:63–106.
CAS
Google Scholar
Tholl D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol. 2006;9(3):297–304.
Article
CAS
PubMed
Google Scholar
Lange BM, Turner GW. Terpenoid biosynthesis in trichomes-current status and future opportunities. Plant Biotechnol J. 2013;11(1):2–22.
Article
CAS
PubMed
Google Scholar
Abbas F, Ke Y, Yu R, Yue Y, Amanullah S, Jahangir MM, Fan Y. Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta. 2017;246(5):803–16.
Article
CAS
PubMed
Google Scholar
Aubourg S, Lecharny A, Bohlmann J. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol Gen Genomics. 2002;267(6):730–45.
Article
CAS
Google Scholar
Martin D, Aubourg S, Schouwey M, Daviet L, Schalk M, Toub O, Lund ST, Bohlmann J. Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly. BMC Plant Biol. 2010;10:226.
Article
PubMed
PubMed Central
CAS
Google Scholar
Falara V, Akhtar TA, Nguyen TT, Spyropoulou EA, Bleeker PM, Schauvinhold I, Matsuba Y, Bonini ME, Schilmiller AL, Last RL, et al. The tomato terpene synthase gene family. Plant Physiol. 2011;157(2):770–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Irmisch S, Jiang Y, Chen F, Gershenzon J, Köllner TG. Terpene synthases and their contribution to herbivore-induced volatile emission in western balsam poplar (Populus trichocarpa). BMC Plant Biol. 2014;14:270.
Article
PubMed
PubMed Central
CAS
Google Scholar
Warren RL, Keeling CI, Yuen MM, Raymond A, Taylor GA, Vandervalk BP, Mohamadi H, Paulino D, Chiu R, Jackman SD, et al. Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. Plant J. 2015;83(2):189–212.
Article
CAS
PubMed
Google Scholar
Muangphrom P, Seki H, Suzuki M, Komori A, Nishiwaki M, Mikawa R, Fukushima EO, Muranaka T. Functional analysis of amorpha-4,11-diene synthase (ADS) homologs from non-artemisinin-producing Artemisia species: the discovery of novel koidzumiol and (+)-α-bisabolol synthases. Plant Cell Physiol. 2016;57(8):1678–88.
Article
CAS
PubMed
Google Scholar
Alquezar B, Rodriguez A, de la Pena M, Pena L. Genomic analysis of terpene synthase family and functional characterization of seven sesquiterpene synthases from Citrus sinensis. Front Plant Sci. 2017;8:1481.
Article
PubMed
PubMed Central
Google Scholar
Degenhardt J, Kollner TG, Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry. 2009;70:1621–37.
Article
CAS
PubMed
Google Scholar
Bohlmann J, Meyer-G G, Croteau R. Plant terpenoid synthases: molecular biology and phylogenetic analysis. Pro Natl Acad Sci USA. 1998;95:4126–33.
Article
CAS
Google Scholar
Chen F, Tholl D, Bohlmann J, Pichersky E. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 2011;66(1):212–29.
Article
CAS
PubMed
Google Scholar
Taniguchi S, Miyoshi S, Tamaoki D, Yamada S, Tanaka K, Uji Y, Tanaka S, Akimitsu K, Gomi K. Isolation of jasmonate-induced sesquiterpene synthase of rice: product of which has an antifungal activity against Magnaporthe oryzae. J Plant Physiol. 2014;171(8):625–32.
Article
CAS
PubMed
Google Scholar
Zhang W, Zhao F, Jiang L, Chen C, Wu L, Liu Z. Different pathogen defense strategies in Arabidopsis: more than pathogen recognition. Cells 2018, 7(12).
Ku YS, Sintaha M, Cheung MY, Lam HM. Plant hormone signaling crosstalks between biotic and abiotic stress responses. Int J Mol Sci. 2018, 19(10).
Barah P, Winge P, Kusnierczyk A, Tran DH, Bones AM. Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection. PLoS One. 2013;8(3):e58987.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martinez-Medina A, Appels FVW, van Wees SCM. Impact of salicylic acid- and jasmonic acid-regulated defences on root colonization by Trichoderma harzianum T-78. Plant Signal Behav. 2017;12(8):e1345404.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lv Z, Zhang L, Tang K. New insights into artemisinin regulation. Plant Signal Behav. 2017;12(10):e1366398.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shen Q, Lu X, Yan T, Fu X, Lv Z, Zhang F, Pan Q, Wang G, Sun X, Tang K. The jasmonate-responsive AaMYC2 transcription factor positively regulates artemisinin biosynthesis in Artemisia annua. New Phytol. 2016;210(4):1269–81.
Article
CAS
PubMed
Google Scholar
Pu GB, Ma DM, Chen JL, Ma LQ, Wang H, Li GF, Ye HC, Liu BY. Salicylic acid activates artemisinin biosynthesis in Artemisia annua L. Plant Cell Rep. 2009;28(7):1127–35.
Article
CAS
PubMed
Google Scholar
Okudera Y, Ito M. Production of agarwood fragrant constituents in Aquilaria calli and cell suspension cultures. Plant Physiol. 2009;154:1998–2007.
Google Scholar
Kumeta Y, Ito M. Characterization of δ-guaiene synthases from cultured cells of Aquilaria, responsible for the formation of the sesquiterpenes in agarwood. Plant Physiol. 2010;154(4):1998–2007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu YH, Liao YC, Lv FF, Zhang Z, Sun PW, Gao ZH, Hu KP, Sui C, Jin Y, Wei JH. Transcription factor AsMYC2 controls the jasmonate-responsive expression of ASS1 regulating sesquiterpene biosynthesis in Aquilaria sinensis (Lour.) Gilg. Plant Cell Physiol. 2017;58(11):1924–33.
Article
CAS
PubMed
Google Scholar
Tingey DT, Manning M, Grothaus LC, Burns WF. Influence of light and temperature on monoterpene emission rates from slash pine. Plant Physiol. 1980;65(5):797–801.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loreto F, Ciccioli P, Cecinato A, Brancaleoni E, Frattoni M, Tricoli D. Influence of environmental factors and air composition on the emission of α-pinene from Quercus ilex leaves. Plant Physiol. 1996;110(1):267–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schuh G, Heiden A, Hoffmann TH, Kahl J, RockelJ P, Rudolph J, Wildt J. Emissions of volatile organic compounds from sunflower and beech: dependence on temperature and light intensity. J Atmos Chem. 1997;27(3):291–318.
Article
CAS
Google Scholar
Loreto F, Delfine S. Emission of isoprene from salts tressed Eucalyptus globulus leaves. Plant Physiol. 2000;123:1605–167.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vallat A, Gu H, Dorn S. How rainfall, relative humidity and temperature influence volatile emissions from apple trees in situ. Phytochemistry. 2005;66(13):1540–50.
Article
CAS
PubMed
Google Scholar
Duhl TR, Helmig D, Guenther A. Sesquiterpene emissions from vegetation: a review. Biogeosciences. 2008;5:761–77.
Article
CAS
Google Scholar
Copolovici L, Kannaste A, Pazouki L, Niinemets U. Emissions of green leaf volatiles and terpenoids from Solanum lycopersicum are quantitatively related to the severity of cold and heat shock treatments. J Plant Physiol. 2012;169(7):664–72.
Article
CAS
PubMed
Google Scholar
Pazouki L, Kanagendran A, Li S, Kannaste A, Memari HR, Bichele R, Niinemets U. Mono- and sesquiterpene release from tomato (Solanum lycopersicum) leaves upon mild and severe heat stress and through recovery: from gene expression to emission responses. Environ Exp Bot. 2016;132:1–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vuorinen T, Nerg AM, Holopainen JK. Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling. Environ Pollut. 2004;131(2):305–11.
Article
CAS
PubMed
Google Scholar
Blande JD, Turunen K, Holopainen JK. Pine weevil feeding on Norway spruce bark has a stronger impact on needle VOC emissions than enhanced ultraviolet-B radiation. Environ Pollut. 2009;157(1):174–80.
Article
CAS
PubMed
Google Scholar
Lee GW, Lee S, Chung MS, Jeong YS, Chung BY. Rice terpene synthase 20 (OsTPS20) plays an important role in producing terpene volatiles in response to abiotic stresses. Protoplasma. 2015;252(4):997–1007.
Article
CAS
PubMed
Google Scholar
Holopainen JK, Gershenzon J. Multiple stress factors and the emission of plant VOCs. Trends Plant Sci. 2010;15(3):176–84.
Article
CAS
PubMed
Google Scholar
Baldovini N, Delasalle C, Joulain D. Phytochemistry of the heartwood from fragrant Santalum species: a review. Flavour Frag J. 2011;26(1):7–26.
Article
CAS
Google Scholar
Jones CG, Moniodis J, Zulak KG, Scaffidi A, Plummer JA, Ghisalberti EL, Barbour EL, Bohlmann J. Sandalwood fragrance biosynthesis involves sesquiterpene synthases of both the terpene synthase (TPS)-a and TPS-b subfamilies, including santalene synthases. J Biol Chem. 2011;286(20):17445–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rani A, Ravikumar P, Reddy MD, Kush A. Molecular regulation of santalol biosynthesis in Santalum album L. Gene. 2013;527(2):642–8.
Article
CAS
PubMed
Google Scholar
Srivastava PL, Daramwar PP, Krithika R, Pandreka A, Shankar SS, Thulasiram HV. Functional characterization of novel sesquiterpene synthases from Indian sandalwood, Santalum album. Sci Rep. 2015;5:10095.
Diaz-Chavez ML, Moniodis J, Madilao LL, Jancsik S, Keeling CI, Barbour EL, Ghisalberti EL, Plummer JA, Jones CG, Bohlmann J. Biosynthesis of sandalwood oil: Santalum album CYP76F cytochromes P450 produce santalols and bergamotol. PLoS One. 2013;8(9):e75053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Celedon JM, Chiang A, Yuen MM, Diaz-Chavez ML, Madilao LL, Finnegan PM, Barbour EL, Bohlmann J. Heartwood-specific transcriptome and metabolite signatures of tropical sandalwood (Santalum album) reveal the final step of (Z)-santalol fragrance biosynthesis. Plant J. 2016;86(4):289–99.
Article
CAS
PubMed
Google Scholar
Jones CG, Keeling CI, Ghisalberti EL, Barbour EL, Plummer JA, Bohlmann J. Isolation of cDNAs and functional characterisation of two multi-product terpene synthase enzymes from sandalwood, Santalum album L. Arch Biochem Biophys. 2008;477(1):121–30.
Article
CAS
PubMed
Google Scholar
Kulheim C, Jones CG, Plummer JA, Ghisalberti EL, Barbour L, Bohlmann J. Foliar application of methyl jasmonate does not increase terpenoid accumulation, but weakly elicits terpenoid pathway genes in sandalwood (Santalum album L.) seedlings. Plant Biotechnol. 2014;31(5):585–91.
Article
CAS
Google Scholar
Zhang XH, Teixeira da Silva JA, Niu MY, Li MZ, He CM, Zhao JH, Zeng SJ, Duan J, Ma GH. Physiological and transcriptomic analyses reveal a response mechanism to cold stress in Santalum album L. leaves. Sci Rep. 2017;7:42165.
Zhang XH, Berkowitz O, Teixeira da Silva JA, Zhang MH, Ma GH, Whelan J, Duan J. RNA-Seq analysis identifies key genes associated with haustorial development in the root hemiparasite Santalum album. Front Plant Sci. 2015;6:661.
Marrero PF, Poulter C, Edwards PA. Effects of site-directed mutagenesis of the highly conserved aspartate residues in domain II of farnesyl diphosphate synthase activity. J Biol Chem. 1992;267:21873–8.
CAS
PubMed
Google Scholar
Moniodis J, Jones CG, Barbour EL, Plummer JA, Ghisalberti EL, Bohlmann J. The transcriptome of sesquiterpenoid biosynthesis in heartwood xylem of Western Australian sandalwood (Santalum spicatum). Phytochemistry. 2015;113:79–86.
Article
CAS
PubMed
Google Scholar
Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC. Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol. 2012;28:489–521.
Article
CAS
PubMed
Google Scholar
Innes R. The positives and negatives of NPR: a unifying model for salicylic acid signaling in plants. Cell. 2018;173(6):1314–5.
Article
CAS
PubMed
Google Scholar
Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R. Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiol. 2007;144(4):1777–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell. 2005;17(1):268–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahesh HB, Subba P, Advani J, Shirke MD, Loganathan RM, Chandana SL, Shilpa S, Chatterjee O, Pinto SM, Prasad TSK, et al. Multi-omics driven assembly and annotation of the sandalwood (Santalum album) genome. Plant Physiol. 2018;176(4):2772–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin DM, Bohlmann J. Identification of Vitis vinifera (−)-alpha-terpineol synthase by in silico screening of full-length cDNA ESTs and functional characterization of recombinant terpene synthase. Phytochemistry. 2004;65(9):1223–9.
Article
CAS
PubMed
Google Scholar
Gao F, Liu B, Li M, Gao X, Fang Q, Liu C, Ding H, Wang L, Gao X. Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in flowers of Freesia x hybrida. J Exp Bot. 2018;69(18):4249–65.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen H, Li G, Köllner TG, Jia Q, Gershenzon J, Chen F. Positive darwinian selection is a driving force for the diversification of terpenoid biosynthesis in the genus Oryza. BMC Plant Biol. 2014;14:239.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schnee C, Kollner TG, Gershenzon J, Degenhardt J. The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-beta-farnesene, (E)-nerolidol, and (E,E)-farnesol after herbivore damage. Plant Physiol. 2002;130(4):2049–2060.
Qian ZG, Zhao ZJ, Xu YF, Qian XH, Zhong JJ. Novel chemically synthesized salicylate derivative as an effective elicitor for inducing the biosynthesis of plant secondary metabolites. Biotechnol Prog. 2006;22:331–3.
Article
CAS
PubMed
Google Scholar
Krokene P, Nagy NE, Solheim H. Methyl jasmonate and oxalic acid treatment of Norway spruce: anatomically based defence responses and increased resistance against fungal infection. Tree Physiol. 2008;28:29–35.
Article
CAS
PubMed
Google Scholar
Menzel TR, Weldegergis BT, David A, Boland W, Gols R, van Loon JJ, Dicke M. Synergism in the effect of prior jasmonic acid application on herbivore-induced volatile emission by Lima bean plants: transcription of a monoterpene synthase gene and volatile emission. J Exp Bot. 2014;65(17):4821–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paschold A, Halitschke R, Baldwin IT. Co(i)-ordinating defenses: NaCOI1 mediates herbivore- induced resistance in Nicotiana attenuata and reveals the role of herbivore movement in avoiding defenses. Plant J. 2007;51(1):79–91.
Article
CAS
PubMed
Google Scholar
Li R, Wang M, Wang Y, Schuman MC, Weinhold A, Schafer M, Jimenez-Aleman GH, Barthel A, Baldwin IT. Flower-specific jasmonate signaling regulates constitutive floral defenses in wild tobacco. Proc Natl Acad Sci U S A. 2017;114(34):E7205–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou W, Kugler A, McGale E, Haverkamp A, Knaden M, Guo H, Beran F, Yon F, Li R, Lackus N, et al. Tissue-specific emission of (E)-α-bergamotene helps resolve the dilemma when pollinators are also herbivores. Curr Biol. 2017;27(9):1336–41.
Article
CAS
PubMed
Google Scholar
Koo AJ, Gao X, Jones AD, Howe GA. A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J. 2009;59(6):974–86.
Article
CAS
PubMed
Google Scholar
Delaunois B, Farace G, Jeandet P, Clement C, Baillieul F, Dorey S, Cordelier S. Elicitors as alternative strategy to pesticides in grapevine? Current knowledge on their mode of action from controlled conditions to vineyard. Environ Sci Pollut Res Int. 2014;21(7):4837–46.
Article
PubMed
Google Scholar
Anand A, Uppalapati SR, Ryu CM, Allen SN, Kang L, Tang Y, Mysore KS. Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol. 2008;146(2):703–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grant M, Lamb C. Systemic immunity. Curr Opin Plant Biol. 2006;9(4):414–20.
Article
CAS
PubMed
Google Scholar
Helmig D, Ortega J, Guenther A, Herrick JD, Geron C. Sesquiterpene emissions from loblolly pine and their potential contribution to biogenic aerosol formation in the southeastern US. Atmos Environ. 2006;40(22):4150–7.
Article
CAS
Google Scholar
Wu C, Wang X. Preliminary research on the identification system for anthracnose and powdery mildew of sandalwood leaf based on image processing. PLoS One. 2017;12(7):e0181537.
Article
PubMed
PubMed Central
CAS
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, et al. TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics. 2003;19(5):651–2.
Article
CAS
PubMed
Google Scholar
Kolosova N, Miller B, Ralph S, Ellis BE, Douglas C, Ritland K, Bohlmann J. Isolation of high-quality RNA from gymnosperm and angiosperm trees. BioTechniques. 2004;36:821–4.
Article
CAS
PubMed
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoo SD, Cho YH, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc. 2007;2(7):1565–72.
Article
CAS
PubMed
Google Scholar
Bohlmann J, Phillips M, Ramachandiran V, Katoh S, Croteau R. cDNA cloning, characterization, and functional expression of four new monoterpene synthase members of the Tpsd gene family from grand fir (Abies grandis). Arch Biochem Biophys. 1999;368:232–43.
Article
CAS
PubMed
Google Scholar
Huang XZ, Xiao YT, Kollner TG, Jing WX, Kou JF, Chen JY, Liu DF, Gu SH, Wu JX, Zhang YJ, et al. The terpene synthase gene family in Gossypium hirsutum harbors a linalool synthase GhTPS12 implicated in direct defence responses against herbivores. Plant Cell Environ. 2018;41(1):261–74.
Article
CAS
PubMed
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.
Article
CAS
PubMed
Google Scholar
Schuman MC, Palmer-Young EC, Schmidt A, Gershenzon J, Baldwin IT. Ectopic terpene synthase expression enhances sesquiterpene emission in Nicotiana attenuata without altering defense or development of transgenic plants or neighbors. Plant Physiol. 2014;166(2):779–97.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vardakou M, Salmon M, Faraldos JA, O'Maille PE. Comparative analysis and validation of the malachite green assay for the high throughput biochemical characterization of terpene synthases. MethodsX. 2014;1:187–96.
Article
PubMed
PubMed Central
Google Scholar
Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44:276–87.
Article
CAS
PubMed
Google Scholar