Kronzucker HJ, Coskun D, Schulze LM, Wong JR, Britto DT. Sodium as nutrient and toxicant. Plant Soil. 2013;369:1–23.
Article
CAS
Google Scholar
Flowers TJ, Colmer TD. Salinity tolerance in halophytes. New Phytol. 2008;179:945–63.
Article
CAS
Google Scholar
Zhou Y, Yin X, Duan R, Hao G, Guo J, Jiang X. SpAHA1 and SpSOS1 coordinate in transgenic yeast to improve salt tolerance. PLoS One. 2015;10:e0137447.
Article
Google Scholar
Fuglsang AT, Paez-Valencia J, Gaxiola RA. Plant proton pumps: regulatory circuits involving H+-ATPase and H+-PPase. In: Geisler M, Venema K, editors. Transporters and pumps in plant signaling. Berlin: Springer; 2010. p. 39–64.
Google Scholar
Gaxiola RA, Palmgren MG, Schumacher K. Plant proton pumps. FEBS Lett. 2007;581:2204–14.
Article
CAS
Google Scholar
Arango M, Gevaudant F, Oufattole M, Boutry M. The plasma membrane proton pump ATPase: the significance of gene subfamilies. Planta. 2003;216:355–65.
CAS
PubMed
Google Scholar
Axelsen KB, Palmgren MG. Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol. 2001;126:696–706.
Article
CAS
Google Scholar
Bose J, Rodrigo-Moreno A, Lai D, Xie Y, Shen W, Shabala S. Rapid regulation of the plasma membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa. Ann Bot. 2015;115:481–94.
Article
Google Scholar
Ding M, Hou P, Shen X, Wang M, Deng S, Sun J, Xiao F, Wang R, Zhou X, Lu C, et al. Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt-resistant and salt sensitive poplar species. Plant Mol Biol. 2010;73:251–69.
Article
CAS
Google Scholar
Niu X, Narasimhan M, Salzman R. NaCl regulation of plasma membrane H+-ATPase gene expression in glycophyte and halophyte. Plant Physiol. 1993;103:712–8.
Article
Google Scholar
Sahu B, Shaw B. Salt-inducible isoform of plasma membrane H+-ATPase gene in rice remains constitutively expressed in natural halophyte, Suaeda maritime. J Plant Physiol. 2009;166:1077–89.
Article
CAS
Google Scholar
Chen M, Song J, Wang B. NaCl increases the activity of the plasma membrane H+-ATPase in C3 halophyte Suaeda salsa callus. Acta Physiol Plant. 2010;36:27–36.
Article
Google Scholar
Lopez-Pérez L, Martinez-Ballesta M, Maurel C, Carvajal M. Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity. Phytochemistry. 2009;70:492–500.
Article
Google Scholar
Palmgren MG. Plant plasma membrane H1-ATPases: powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol. 2001;52:817–45.
Article
CAS
Google Scholar
Pons R, Cornejo MJ, Sanz A. Differential salinity-induced variations in the activity of H+-pumps and Na+/H+ antiporters that are involved in cytoplasm ion homeostasis as a function of genotype and tolerance level in rice cell lines. Plant Physiol Biochem. 2011;49:1399–409.
Article
CAS
Google Scholar
Vitart V, Baxter I, Doerner P, Harper JF. Evidence for a role in growth and salt resistance of a plasma membrane H+-ATPase in the root endodermis. Plant J. 2001;27:191–201.
Article
CAS
Google Scholar
Gevaudant F, Duby G, Stedingk E, Zhao R, Morsomme P, Boutry M. Expression of a constitutively activated plasma membrane H+-ATPase alters plant development and increases salt tolerance. Plant Physiol. 2007;144:1763–76.
Article
CAS
Google Scholar
Wu SJ, Ding L, Zhu JK. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell. 1996;8:617–27.
Article
CAS
Google Scholar
Xu H, Jiang X, Zhan K, Cheng X, Chen X, Pardo JM, Cui D. Functional characterization of a wheat plasma membrane Na/H antiporter in yeast. Arch Biochem Biophys. 2008;473:8–15.
Article
CAS
Google Scholar
Oh DH, Leidi E, Zhang Q, Hwang SM, Li Y, Quintero FJ, Jiang X, D’Urzo MP, Lee SY, Zhao Y, et al. Loss of halophytism by interference with SOS1 expression. Plant Physiol. 2009;151:210–22.
Article
CAS
Google Scholar
Olias R, Eljakaoui Z, Li J, Morales PA, Marin-Manzano MC, Pardo JM, Blelver A. The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant Cell Environ. 2009;32:904–16.
Article
CAS
Google Scholar
Tang RJ, Liu H, Bao Y, Lv QD, Yang L, Zhang H. The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol Biol. 2010;74:367–80.
Article
CAS
Google Scholar
Fraile-Escanciano A, Kamisugi Y, Cuming AC, Rodríguez-Navarro A, Benito B. The SOS1 transporter of Physcomitrella patens mediates sodium efflux in planta. New Phytol. 2010;188:750–61.
Article
CAS
Google Scholar
Feki K, Quintero FJ, Pardo JM, Masmoudi K. Regulation of durum wheat Na+/H+ exchanger TdSOS1 by phosphorylation. Plant Mol Biol. 2001;76:545–56.
Article
Google Scholar
Li Q, Tang Z, Hu Y, Yu L, Liu Z, Xu G. Functional analyses of a putative plasma membrane Na+/H+ antiporter gene isolated from salt tolerant Helianthus tuberosus. Mol Biol Rep. 2014;41:5097–108.
Article
CAS
Google Scholar
Quintero FJ, Martinez-Atienza J, Villalta I, Jiang X, Kim MY, Ali Z, Fujii H, Mendoza I, Yun DJ, Zhu JK, et al. Activation of the plasma membrane Na/H antiporter salt-overly-sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc Natl Acad Sci U S A. 2011;108:2611–6.
Article
CAS
Google Scholar
Martinéz-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ. Conservation of the salt overly sensitive pathway in rice. Plant Physiol. 2007;143:1001–12.
Article
Google Scholar
Shi H, Ishitani M, Kim C, Zhu JK. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci U S A. 2000;97:6896–901.
Article
CAS
Google Scholar
Zhu JK, Liu J, Xiong L. Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell. 1998;10:1181–91.
Article
CAS
Google Scholar
Shi H, Lee BH, Wu SJ, Zhu J. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol. 2003;21:81–5.
Article
CAS
Google Scholar
Zhou Y, Lai Z, Yin X, Yu S, Xu Y, Wang X, Cong X, Luo Y, Xu H, Jiang X. Hyperactive mutant of a wheat plasma membrane Na+/H+ antiporter improves the growth and salt tolerance of transgenic tobacco. Plant Sci. 2016;253:176–86.
Article
CAS
Google Scholar
Yi XP, Sun Y, Yang Q, Guo AP, Chang LL, Wang D, Tong Z, Jin X, Wang LM, Yu JL, et al. Quantitative proteomics of Sesuvium portulacastrum leaves revealed that ion transportation by V-ATPase and sugar accumulation in chloroplast played crucial roles in halophyte salt tolerance. J Proteome. 2014;99:84–100.
Article
CAS
Google Scholar
Slama I, Ghnaya T, Savoure A, Abdelly C. Combined effects of long-term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum. C R Biol. 2008;331:442–51.
Article
CAS
Google Scholar
Rabhi M, Ferchichi S, Jouini J, Hamrouni MH, Koyro HW, Ranieri A, Abdelly C, Smaoui A. Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresour Technol. 2010;101:6822–8.
Article
CAS
Google Scholar
Lokhande VH, Nikam TD, Suprasanna P. Biochemical, physiological and growth changes in response to salinity in callus cultures of Sesuvium portulacastrum L. Plant Cell Tiss Org. 2010;102:17–25.
Article
Google Scholar
Nawaz I, Iqbl M, Hakvoort HWJ, Bliek M, de Boer B, Schat H. Expression levels and promoter activities of candidate salt tolerance genes in halophyte and glycophytic Brassicaceae. Environ Exp Bot. 2014;99:59–66.
Article
CAS
Google Scholar
Fan Y, Wan S, Jiang Y, Xia Y, Chen X, Gao M, Cao Y, Luo Y, Zhou Y, Jiang X. Over-expression of a plasma membrane H+-ATPase SpAHA1 conferred salt tolerance to transgenic Arabidopsis. Protoplasma. 2018;255:1827–37.
Article
CAS
Google Scholar
Zhou Y, Yin X, Wan S, Hu Y, Hu Y, Xie Q, Li R, Zhu B, Fu S, Guo J, Jiang X. The Sesuvium portulacastrum plasma membrane Na+/H+ antiporter SpSOS1 complemented the salt sensitivity of transgenic Arabidopsis sos1 mutant plants. Plant Mol Biol Rep. 2018;36:553–63.
Article
CAS
Google Scholar
Mansour MMF. The plasma membrane transport systems and adaptation to salinity. J Plant Physiol. 2014;171:1787–800.
Article
CAS
Google Scholar
Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song C, Kristiansen KA, Bych K, Schulz A, Shabala S, Schumaker KS, et al. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. Plant Cell. 2007;19:1617–34.
Article
CAS
Google Scholar
Munns R, Tester M. Mechanism of salinity tolerance. Annu Rev Plant Biol. 2008;59:651–81.
Article
CAS
Google Scholar
Wu GQ, Feng RJ, Wang SM, Wang CM, Bao AK, Wei L, Yuan HJ. Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1–1 confers enhanced salinity tolerance in chimeric sugar beet (Beta vulgaris L.). Front Plant Sci. 2015;6:581.
PubMed
PubMed Central
Google Scholar
Hedrich R, Shabala S. Stomata in a saline world. Curr Opin Plant Biol. 2018;46:87–95.
Article
CAS
Google Scholar
Almeida DM, Oliveira MM, Saibo NJM. Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol. 2017;40:326–45.
Article
CAS
Google Scholar
Bao AK, Wang YW, Xi JJ, Liu C, Zhang JI, Wang SM. Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 enhances salt and drought tolerance in transgenic Lotus corniculatus by increasing cations accumulation. Funct Plant Biol. 2014;41:203–14.
Article
CAS
Google Scholar
Zhao FY, Zhang XJ, Li PH, Zhao YX, Zhang H. Co-expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1. Mol Breeding. 2006;17:341–53.
Article
Google Scholar
Liu SP, Zheng LQ, Xue YH, Zhang Q, Wang L, Shou HX. Overexpression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in rice. J Plant Biol. 2010;53:444–52.
Article
CAS
Google Scholar
Gouiaa S, Khoudi H, Leidi EO, Pardo JM, Masmoudi K. Expression of wheat Na+/H+ antiporter TNHXS1 and H+-pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance. Plant Mol Biol. 2012;79:137–55.
Article
CAS
Google Scholar
Upadhyay A, Upadhyay AK, Bhirangi R. Expression of Na+/H+ antiporter gene in response to water and salinity stress in grapevine rootstocks. Biol Plant. 2012;56:762–6.
Article
CAS
Google Scholar
Yadav NS, Shukla P, Jha A, Agarwal P, Jha B. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biol. 2012;12:188.
Article
CAS
Google Scholar
Yang Q, Chen Z, Zhou X, Yin H, Xin X, Hong X, Zhu JK, Gong ZZ. Overexpression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant. 2009;2:22–31.
Article
CAS
Google Scholar
Wang M, Wang Y, Sun J, Ding M, Deng S, Hou P, Ma X, Zhang Y, Wang F, Sa G, et al. Overexpression of PeHA1 enhances hydrogen peroxide signaling in salt-stressed Arabidopsis. Plant Physiol Biochem. 2013;71:37–48.
Article
CAS
Google Scholar
Coskun D, Britto D, Jean Y, Kabir I, Tolay I, Torun AA, Kronzucker HJ. K+ efflux and retention in response to NaCl stress do not predict salt tolerance in contrasting genotypes ofrice (Oryza sativa L.). PLoS One. 2013;8:e57767.
Article
CAS
Google Scholar
Barragan V, Leidi EO, Andrés Z, Rubio L, De Luca A, Fernandez JA, Cubero B, Pardo JM. Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell. 2012;24:1127–42.
Article
CAS
Google Scholar
Marschner H. Mineral nutrition of higher plants. Ann Bot. 1995;78:527–8.
Google Scholar
Duggleby RG, Dennis DT. Pyruvate kinase, a possible regulatory enzyme in higher plants. Plant Physiol. 1973;52:312–7.
Article
CAS
Google Scholar
Maathuis FJM, Amtmann A. K+ nutrition and Na + toxicity: the basis of cellular K+/Na+ ratios. Ann Bot. 1999;84:123–33.
Article
CAS
Google Scholar
Lutts S, Kinet J, Bouharmont J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot. 1996;78:389–98.
Article
CAS
Google Scholar
Tester M, Davenport RJ. Na+ tolerance and Na+ transport in higher plants. Ann Bot. 2003;91:503–27.
Article
CAS
Google Scholar
Sun J, Dai S, Wang R, Chen S, Li N, Zhou X, Lu C, Shen X, Zheng X, Hu Z, et al. Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance. Tree Physiol. 2009;29:1175–86.
Article
CAS
Google Scholar
Horie T, Karahara I, Katsuhara M. Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants. Rice. 2012;5:11.
Article
Google Scholar
Qi Z, Spalding EP. Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+/H+ antiporter during salinity stress. Plant Physiol. 2004;136:2548–55.
Article
CAS
Google Scholar
Chaves MM, Oliveira MM. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot. 2004;55:2365–84.
Article
CAS
Google Scholar
Chaves MM, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot. 2009;103:551–60.
Article
CAS
Google Scholar
Belles-Boix E, Babiychuk E, Van Montagu M, Inze D, Kushnir S. CEO1 a new protein from Arabidopsis thaliana, protects yeast against oxidative damage. FEBS Lett. 2000;482:19–24.
Article
CAS
Google Scholar
Katiyar-Agarwal S, Zhu J, Kim K, Agarwal M, Fu X, Huang A, Zhu JK. The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc Natl Acad Sci U S A. 2006;103:18816–21.
Article
CAS
Google Scholar
Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann HJ, Kangasjarvi J. Ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell. 2000;12:1849–62.
Article
CAS
Google Scholar
Bose J, Xie Y, Shen W, Shabala S. Haem oxygenase modifies salinity tolerance in Arabidopsis by controlling K+ retention via regulation of the plasma membrane H+-ATPase and by altering SOS1 transcript levels in roots. J Exp Bot. 2013;64:471–81.
Article
CAS
Google Scholar
Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V. Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci. 2010;123:1468–79.
Article
CAS
Google Scholar
Demidchik V, Maathuis FJM. Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol. 2007;175:387–404.
Article
CAS
Google Scholar
Velarde-Buendía AM, Shabala S, Cvikrova M, Dobrovinskaya O. Salt-sensitive and salt-tolerant barley varieties differ in the extent of potentiation of the ROS-induced K+ efflux by polyamines. Plant Physiol Biochem. 2012;61:18–23.
Article
Google Scholar
Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium- mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–43.
Article
CAS
Google Scholar
Shabala L, Cuin TA, Newman IA, Shabala S. Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants. Planta. 2005;222:1041–50.
Article
CAS
Google Scholar
Dhindsa RS, Matowe W. Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J Exp Bot. 1981;32:79–91.
Article
CAS
Google Scholar