Katsarou K, Rao ALN, Tsagris M, Kalantidis K. Infectious long non-coding RNAs. Biochimie. 2015;117:37–47.
Article
CAS
PubMed
Google Scholar
Li H, Heng D, Dong Z, Ming L, Yanhong L, Fang Z, et al. Systematic identification of long non-coding RNAs during pollen development and fertilization in Brassica rapa. Plant J. 2018;96(1):203–22.
Article
PubMed
CAS
Google Scholar
Wang M, Yuan D, Tu L, Gao W, He Y, Hu H, et al. Long noncoding RNAs and their proposed functions in fibre development of cotton (Gossypium spp.). New Phytol. 2015;207(4):1181–97.
Article
CAS
PubMed
Google Scholar
Nie L, Wu HJ, Hsu JM, Chang SS, Labaff AM, Li CW, et al. Long non-coding RNAs: versatile master regulators of gene expression and crucial players in cancer. Am J Transl Res. 2012;4(2):127–50.
CAS
PubMed
PubMed Central
Google Scholar
Liu D, Mewalal R, Hu R, Tuskan GA, Yang X. New technologies accelerate the exploration of non-coding RNAs in horticultural plants. Hortic Res. 2017;4:17031.
Article
PubMed
PubMed Central
CAS
Google Scholar
Amor BB, Wirth S, Merchan F, Laporte P, D’Aubentoncarafa Y, Hirsch J, et al. Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res. 2009;19(1):57–69.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu M, Zhang M, Xing L, Li W, Jiang H, Wang L, et al. Transcriptomic analysis of long non-coding RNAs and coding genes uncovers a complex regulatory network that is involved in maize seed development. Genes. 2017;8(10):1–14.
Google Scholar
Wang M, Zhao W, Gao L, Zhao L. Genome-wide profiling of long non-coding RNAs from tomato and a comparison with mRNAs associated with the regulation of fruit ripening. BMC Plant Biol. 2018;18(1):75.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li S, Yu X, Lei N, Cheng Z, Zhao P, He Y, et al. Genome-wide identification and functional prediction of cold and/or drought-responsive lncRNAs in cassava. Sci Rep. 2017;7:45981.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu F, Marquardt S, Lister C, Swiezewski S, Dean C. Targeted 3′ processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science. 2010;327(5961):94–7.
Article
CAS
PubMed
Google Scholar
Zhu QH, Wang MB. Molecular functions of long non-coding RNAs in plants. Genes. 2012;3(1):176.
Article
PubMed
PubMed Central
Google Scholar
Kang C, Liu Z. Global identification and analysis of long non-coding RNAs in diploid strawberry Fragaria vesca during flower and fruit development. BMC Genomics. 2015;16(1):815.
Article
PubMed
PubMed Central
CAS
Google Scholar
Swiezewski S, Liu F, Magusin A, Dean C. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature. 2009;462(7274):799–802.
Article
CAS
PubMed
Google Scholar
Heo JB, Sung S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science. 2011;331(6013):76–9.
Article
CAS
PubMed
Google Scholar
Li R, Fu D, Zhu B, Luo Y, Zhu H. CRISPR/Cas9-mediated mutagenesis of lncRNA1459 alters tomato fruit ripening. Plant J. 2018;94(3):513–24.
Article
CAS
PubMed
Google Scholar
Paraskevopoulou MD, Hatzigeorgiou AG. Analyzing miRNA-lncRNA interactions. Method Mol Biol. 2016;1402(1):271–86.
Article
CAS
Google Scholar
Wu HJ, Wang XJ. Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. Plant Physiol. 2013;161(4):1875–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meng, Wang, Hua-Jun, Fang, Chengcai, Xiu-Jie. A long noncoding RNA involved in rice reproductive development by negatively regulating Osa-miR160. Sci Bull 2017;62(7):470–475.
Tian J, Song Y, Du Q, Yang X, Ci D, Chen J, et al. Population genomic analysis of gibberellin-responsive long non-coding RNAs in Populus. J Exp Bot. 2016;67(8):2467.
Article
CAS
PubMed
Google Scholar
Werner T, Motyka V, Strnad M, Schmülling T. Regulation of plant growth by cytokinin. P Natl Acad Sci USA. 2001;98(18):10487–92.
Article
CAS
Google Scholar
Young TE, Geisler-Lee J, Gallie DR. Senescence-induced expression of cytokinin reverses pistil abortion during maize flower development. Plant J. 2004;38(6):910–22.
Article
CAS
PubMed
Google Scholar
Rashotte AM, Carson SD, To JP, Kieber JJ. Expression profiling of cytokinin action in Arabidopsis. Plant Physiol. 2003;132(4):1998–2011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holt AL, Haperen JMV, Groot EP, Laux T. Signaling in shoot and flower meristems of Arabidopsis thaliana. Curr Opin Plant Biol. 2014;17(1):96–102.
Article
CAS
PubMed
Google Scholar
Yu H, Ito T, Zhao Y, Peng J, Kumar P, Meyerowitz EM. Floral homeotic genes are targets of gibberellin signaling in flower development. P Natl Acad Sci USA. 2004;101(20):7827.
Article
CAS
Google Scholar
Sun L, Yang W, Zhang Q, Cheng T, Pan H, Xu Z, et al. Genome-wide characterization and linkage mapping of simple sequence repeats in mei (Prunus mume Sieb. Et Zucc.). PLoS One. 2013;8(3):e59562.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang L, Zhao S, Gu C, Zhou Y, Zhou H, Ma J, et al. Deep RNA-Seq uncovers the peach transcriptome landscape. Plant Mol Biol. 2013;83(4–5):365–77.
Article
CAS
PubMed
Google Scholar
Li L, Eichten SR, Shimizu R, Petsch K, Yeh CT, Wu W, et al. Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol. 2014;15(2):R40.
Article
PubMed
PubMed Central
Google Scholar
Deng P, Shu L, Nie X, Song W, Liang W. Conservation analysis of long non-coding RNAs in plants. Sci China Life Sci. 2018;61(2):1–9.
Google Scholar
Xu Q, Song Z, Zhu C, Tao C, Kang L, Liu W, et al. Systematic comparison of lncRNAs with protein coding mRNAs in population expression and their response to environmental change. BMC Plant Biol. 2017;17(1):42.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature. 2012;482(7385):339–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deng F, Zhang X, Wang W, Yuan R, Shen F. Identification of Gossypium hirsutum long non-coding RNAs (lncRNAs) under salt stress. BMC Plant Biol. 2018;18(1):23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Clark SE. Running MP, Meyerowitz EM. CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development. 1998;125(19):3843.
PubMed
Google Scholar
Schoof H, Lenhard M, Haecker A, Mayer KFX, Jürgens G, Laux T. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell. 2000;100(6):635–44.
Article
CAS
PubMed
Google Scholar
Peremyslov VV, Prokhnevsky AI, Dolja VV. Class XI myosins are required for development, cell expansion, and F-actin organization in Arabidopsis. Plant Cell. 2010;22(6):1883.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu J, Ding Z, Vizcaybarrena G, Shi J, Liang W, Yuan Z, et al. ABORTED MICROSPORES acts as a master regulator of pollen wall formation in Arabidopsis. Plant Cell. 2014;26(4):1544.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Qin M, Qiao X, Cheng Y, Li X, Zhang H, et al. A new insight into the evolution and functional divergence of SWEET transporters in Chinese white pear (Pyrus bretschneideri). Plant Cell Physiol. 2017;58(4):839.
Article
CAS
PubMed
Google Scholar
Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21.
Article
CAS
PubMed
Google Scholar
Marquardt S, Raitskin O, Wu Z, Liu F, Sun Q, Dean C. Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription. Mol Cell. 2014;54(1):156–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Wang H, Chua NH. Long noncoding RNA transcriptome of plants. Plant Biotechnol J. 2015;13(3):319–28.
Article
CAS
PubMed
Google Scholar
Suzuki N, Shulaev V, Mittler R. Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c. Plant Physiol. 2005;139(3):1313–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krogan NT, Hogan K, Long JA. APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19. Development. 2012;139(22):4180–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deyholos MK, Sieburth LE. Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron. Plant Cell. 2000;12(10):1799–810.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adamczyk BJ, Fernandez DE. MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiol. 2009;149(4):1713.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren J, Yang Y, Xue J, Xi Z, Hu L, Pan SJ, et al. Long noncoding RNA SNHG7 promotes the progression and growth of glioblastoma via inhibition of miR-5095. Biochem Bioph Res Co. 2018;496:712–8.
Article
CAS
Google Scholar
Li Z, Kim YJ, Dinh TT, Chen X. miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems. Plant J. 2007;51(5):840–9.
Article
CAS
Google Scholar
Wang T, Pan H, Wang J, Yang W, Cheng T, Zhang Q. Identification and profiling of novel and conserved microRNAs during the flower opening process in Prunus mume via deep sequencing. Mol Gen Genomics. 2014;289(2):169–83.
Article
CAS
Google Scholar
Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science. 2004;303(5666):2022.
Article
CAS
PubMed
Google Scholar
Chen X, Liu J, Cheng Y, Jia D. HEN1 functions pleiotropically in Arabidopsis development and acts in C function in the flower. Development 2002;129(5):1085.
Cartolano M, Castillo R, Efremova N, Kuckenberg M, Zethof J, Gerats T, et al. A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity. Nat Genet. 2007;39(7):901–5.
Article
CAS
PubMed
Google Scholar
Wang W, Shi T, Ni X, Xu Y, Qu S, Gao Z. The role of miR319a and its target gene TCP4 in the regulation of pistil development in Prunus mume. Genome. 2017;61(1).
Liang G, He H, Li Y, Wang F, Yu D. Molecular mechanism of microRNA396 mediating pistil development in Arabidopsis. Plant Physiol. 2014;164(1):249–58.
Article
CAS
PubMed
Google Scholar
Werner T, Motyka V, Laucou V, Smets R, Onckelen HV, Schmülling T. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell. 2003;15(11):2532–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
To JP, Deruère J, Maxwell BB, Morris VF, Hutchison CE, Ferreira FJ, et al. Cytokinin regulates type-a Arabidopsis response regulator activity and protein stability via two-component phosphorelay. Plant Cell. 2007;19(12):3901–14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu Z, Li J, Wang L, Li Q, Lu Q, Yu Y, et al. Repression of callus initiation by the miRNA-directed interaction of auxin-cytokinin in Arabidopsis thaliana. Plant J. 2016;87(4):391–402.
Article
CAS
PubMed
Google Scholar
Cheng Y, Dai X, Zhao Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 2006;20(13):1790–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang JW, Wang LJ, Xue HW, Chen XY. Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell. 2005;17(8):2204–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu T, Wu P, Wang Q, Wang W, Zhang C, Sun F, et al. Comparative transcriptome discovery and elucidation of the mechanism of long noncoding RNAs during vernalization in Brassica rapa. Plant Growth Regul. 2018;85:27–39.
Article
CAS
Google Scholar
Shi T, Zhang QL, Gao ZH, Zhen Z, Zhuang WB. Analyses on pistil differentiation process and related biochemical indexes of two cultivars of Prunus mume. J Plant Resour Env. 2011;20(4):35–41.
Google Scholar
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 2015;43(Database issue):D130.
Article
CAS
PubMed
Google Scholar
Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res. 1997;7(10):986.
Article
CAS
PubMed
Google Scholar
Wang XW, Xiong AS, Yao QH, Zhang Z, Qiao YS. Direct isolation of high-quality low molecular weight RNA of pear peel from the extraction mixture containing nucleic acid. Mol Biotechnol. 2010;44(1):61–5.
Article
CAS
PubMed
Google Scholar
Ping CY, Yu YW. Determination of GA3, IAA, ABA and ZT in dormant buds of Allium ovalifolium by HPLC. J Sichuan Agr Univ. 2005;23(4):498–500.
Google Scholar
Tong ZG, Gao ZH, Wang F, Zhou J, Zhang Z. Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol Biol. 2009;10(1):1–13.
Article
Google Scholar
Wu X, Gong Q, Ni X, Zhou Y, Gao Z. UFGT: the key enzyme associated with the petals variegation in Japanese apricot. Front Plant Sci. 2017;8:108.
CAS
PubMed
PubMed Central
Google Scholar