Bhattacharjee S. Reactive oxygen species and oxidative burst. Roles in stress, senescence and signal transduction in plants. Curr Sci. 2005;89:1113–21.
CAS
Google Scholar
Apel K, Hirt H. Reactive oxygen species. Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373–99.
Article
PubMed
CAS
Google Scholar
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004;9:490–8.
Article
PubMed
CAS
Google Scholar
Foyer CH, Noctor G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell. 2005;17(7):1866–75.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays. 2006;28(11):1091–101.
Article
PubMed
CAS
Google Scholar
Shao H, Chu L, Shao M, Jaleel CA, Mi H. Higher plant antioxidants and redox signaling under environmental stresses. C R Biol. 2008;331:433–41.
Article
PubMed
CAS
Google Scholar
McInnis SM, Desikan R, Hancock JT, Hiscock SJ. Production of reactive oxygen species and reactive nitrogen species by angiosperm stigmas and pollen: potential signalling crosstalk? New Phytol. 2006;172(2):221–8.
Article
PubMed
CAS
Google Scholar
McInnis SM, Emery DC, Porter R, Desikan R, Hancock JT, Hiscock SJ. The role of stigma peroxidases in flowering plants: insights from further characterization of a stigma-specific peroxidase (SSP) from Senecio squalidus (Asteraceae). J Exp Bot. 2006;57(8):1835–46.
Article
PubMed
CAS
Google Scholar
Zafra A, Rodríguez-García MI, Alche JD. Cellular localization of ROS and NO in olive reproductive tissues during flower development. BMC Plant Biol. 2010;10:36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cárdenas L, Mckenna ST, Kunkel JG, Hepler PK. NAD(P)H oscillates in pollen tubes and is correlated with tip growht. Plant Physiol. 2006;142(4):1460–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress. Physiol Plant. 2008;133(3):481–9.
Article
PubMed
CAS
Google Scholar
Pitzschke A, Forzani C, Hirt H. Reactive oxygen species signaling in plants. Antioxid Redox Signal. 2006;8(9–10):1757–64.
Article
PubMed
CAS
Google Scholar
Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot. 2003;91:179–94.
Article
PubMed
PubMed Central
CAS
Google Scholar
McCord JM, Fridovich I. Superoxide dismutase. An enzymatic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244(22):6049–55.
PubMed
CAS
Google Scholar
Bridges SM, Salin ML. Distribution of iron-containing superoxide dismutase in vascular plants. Plant Physiol. 1981;68(2):275–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bowler C, Van Camp W, Van Montagu M, Izné D, Asada K. Superoxide dismutase in plants. Crit Rev Plant Sci. 1994;13(3):199–218.
Article
CAS
Google Scholar
Kliebenstein DJ, Monde R, Last RL. Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol. 1998;118(2):637–50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot. 2002;53(372):1331–41.
Article
PubMed
CAS
Google Scholar
Corpas FJ, Fernández-Ocaña A, Carreras A, Valderrama R, Luque F, Esteban FJ, Rodríguez-Serrano M, Chaki M, Pedrajas JR, Sandalio LM, del Río LA, Barroso JB. The expression of different superoxide dismutase forms is cell-type dependent in olive (Olea europaea L.) leaves. Plant Cell Physiol. 2006;47(7):984–94.
Article
PubMed
CAS
Google Scholar
Salin ML, Bridges SM. Absence of the iron-containing superoxide dismutase in mitochondria from mustard (Brassica campestris). Biochem J. 1981;195(1):229–33.
Article
PubMed
PubMed Central
CAS
Google Scholar
Asada K. Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM, editors. Causes of photooxidative stress and amlioration of defense systems in plants; 1994. p. 77–104.
Google Scholar
Droillard MJ, Paulin A. Isozymes of superoxide dismutase in mitochondria and peroxisomes isolated from petals of carnation (Dianthus caryophyllus) during senescence. Plant Physiol. 1990;94:1187–92.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kanematsu S, Okayasu M, Ueno S. Atypical cytosol-localized Fe-superoxide dismutase in the moss Pogonatum inflexum. Bull Minamikyushu Univ. 2013;43A:23–31.
Google Scholar
Bannister JV, Bannister WH, Rotilio G. Aspects of the structure, function, and applicatons of superoxide dismutase. CRC Crit Rev Biochem. 1987;22(2):111–80.
Article
PubMed
CAS
Google Scholar
Baum JA, Scandalios J. Isolation and characterization of the cytosolic and mitochondrial superoxide dismutases of maize. Arch Biochem Biophys. 1981;206(2):249–64.
Article
PubMed
CAS
Google Scholar
del Río LA, Lyon D, Olah I, Glick B, Salin ML. Immunocytochemical evidence for a peroxisomal localization of manganese superoxide dismutase in leaf protoplasts from higher plant. Planta. 1983;158:216–24.
Article
PubMed
Google Scholar
del Río LA, Sandalio LM, Altomare DA, Zilinskas BA. Mitochondrial and peroxisomal manganese superoxide dismutase: differential expression during leaf senescence. J Exp Bot. 2003;54(384):923–33.
Article
PubMed
CAS
Google Scholar
Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. In: J Free Rad Biol Med, vol. 1. Oxford: Oxford Science Publications, Clarendon Press; 1985. p. 331–2.
Nedd S, Redler RL, Proctor EA, Dokholyan NV, Alexandrova AN. Cu,Zn-superoxide dismutase without Zn is folded but catalytically inactive. J Mol Biol. 2014;426:4112–24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Szpryngiel S, Oliveberg M, Mäler L. Diffuse binding of Zn2+ to the denatured ensemble of cu/Zn superoxide dismutase 1. FEBS Open Bio. 2015;5:56–634.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fridovich I. The biology of oxygen radicals. Science. 1978;201(4359):875–80.
Article
PubMed
CAS
Google Scholar
Sandalio LM, del Río LA. Intraorganellar distribution of superoxide dismutase in plant peroxisomes (glyoxysomes and leaf peroxisomes). Plant Physiol. 1988;88:1215–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kanematsu S, Asada K. Chloroplast and cytosol isozymes of Cu,Zn-superoxide dismutase: their characteristic amino acid sequences. Free Radic Res Commun. 1991;12-13:383–90.
Article
CAS
Google Scholar
Ogawa K, Kanematsu S, Asada K. Intra- and extra-cellular localization of “cytosolic” CuZn-superoxide dismutase in spinach keaf and hypocotyl. Plant Cell Physiol. 1996;37(6):790–9.
Article
CAS
Google Scholar
Ogawa K, Kanematsu S, Asada K. Generation of superoxide anion and localization of CuZn-superoxide dismutase in the vascular tissue of spinach hypocotyls: their association with lignification. Plant Cell Physiol. 1997;38(10):1118–26.
Article
PubMed
CAS
Google Scholar
Sandalio LM, López-Huertas E, Bueno P, del Río LA. Immunocytochenical localizaton of Copper,Zinc superoxide dismutase in peroxisomes form watermelon (Citrullus vulgaris Schrad.) cotyledons. Free Radic Res. 1997;26(3):187–94.
Article
PubMed
CAS
Google Scholar
Corpas FJ, Sandalio LM, del Río LA, Trelease RN. Copper-zinc superoxide dismutase is a constituent enzyme of the matrix of peroxisomes in the cotyledons of oilseed plants. New Phytol. 1998;138(2):307–14.
Article
CAS
Google Scholar
del Río LA, Corpas FJ, Sandalio LM, Palma JM, Gómez M, Barroso JB. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot. 2002;53(372):1255–72.
Article
PubMed
Google Scholar
Zafra A, Jiménez-Quesada MJ, Traverso JA, Corpas FJ, Alché JD. Peroxisomal localization of CuZn superoxide dismutase in the male reproductive tissues of the olive tree. Microsc Microanal. 2012;18(S5):33–4.
Article
CAS
Google Scholar
Fink RC, Scandalios JG. Molecular evolution and structure--function relationships of the superoxide dismutase gene families in angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutases. Arch Biochem Biophys. 2002;399(1):19–36.
Article
PubMed
CAS
Google Scholar
Alché JD, Corpas FJ, Rodríguez-García MI, del Río LA. Identification and immunulocalization of superoxide dismutase isoenzymes of olive pollen. Physiol Plant. 1998;104(4):772–6.
Article
Google Scholar
Boluda L, Alonso C, Fernández-Caldas E. Purification, characterization, and partial sequencing of two new allergens of Olea europaea. J Allergy Clin Immunol. 1998;101(2 Pt 1):210–6.
Article
PubMed
CAS
Google Scholar
Zafra A, Carmona R, Jimenez-Lopez JC, Pulido A, Claros MG, Alché JD. Identification of distinctive variants of the olive pollen allergen ole e 5 (Cu,Zn superoxide dismutase) throughout the analysis of the olive pollen transcriptome. In: Ortuño F, Rojas I, editors. Bioinformatics and Biomedical Engineering. IWBBIO, vol. 9043: Springer, Cham; 2015. Lect Notes Comput Sci. https://link.springer.com/chapter/10.1007/9783-3-19-16483-0_45#citeas
Wilkins KA, Bancroft J, Bosch M, Ings J, Smirnoff N, Franklin-Tong VE. Reactive oxygen species and nitric oxide mediate actin reorganization and programmed cell death in the self-incompatibility response of papaver. Plant Physiol. 2011;156(1):404–16.
Article
PubMed
PubMed Central
CAS
Google Scholar
Serrano I, Romero-Puertas MC, Sandalio LM, Olmedilla A. The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility. J Exp Bot. 2015;66(10):2869–76.
Article
PubMed
CAS
Google Scholar
Potocký M, Jones MA, Bezvoda R, Smirnoff N, Zárský V. Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol. 2007;174(4):742–51.
Article
PubMed
CAS
Google Scholar
Hiscock SJ, Allen AM. Diverse cell signalling pathways regulate pollen-stigma interactions: the search for consensus. New Phytol. 2008;179(2):286–317.
Article
PubMed
CAS
Google Scholar
Mckersie BD, Bowley R, Harjanto E, Leprince O. Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol. 1996;111(4):1177–81.
Article
PubMed
PubMed Central
CAS
Google Scholar
Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba-Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernández JA. Involvement of cytosolic ascorbate peroxidase and cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot. 2011;62(8):2599–613.
Article
PubMed
CAS
Google Scholar
Heslop-Harrison J, Heslop-Harrison Y. Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Stain Technol. 1970;45(3):115–20.
Article
PubMed
CAS
Google Scholar
Acevedo A, Scandalios JG. Expression of the catalase and superoxide dismutase genes in mature pollen in maize. Theor Appl Genet. 1990;80(5):705–11.
Article
PubMed
CAS
Google Scholar
Selinski J, Scheibe R. Pollen tube growth: where does the energy come from? Plant Signal Behav. 2014;9(12):e977200.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tanaka K, Takio S, Yamamoto I, Satoh T. Purification of the cytosolic CuZn-superoxide dismutase (CuZn-SOD) of Marchantia paleacea var. diptera and its resemblance to CuZn-SOD from chloroplasts. Plant Cell Physiol. 1996;37(4):523–9.
Article
PubMed
CAS
Google Scholar
Arai K, Iizuka S, Tada Y, Oikawa K, Taniguchi N. Increase in the glucosylated form of erythrocyte cu-Zn-superoxide dismutase in diabetes and close association of the non-enzymatic glycosylation with the enzyme activity. Biochim Biophys Acta. 1987;924:292–6.
Article
PubMed
CAS
Google Scholar
Ookawara T, Kawamura N, Kitagawa Y, Taniguchi N. Site-specific and random fragmentation of Cu,Zn-superoxide dismutase by glycation reaction. Implication of reactive oxygen species. J Biol Chem. 1992;267(26):18505–10.
PubMed
CAS
Google Scholar
Saraswathi M, Nakanishi T, Shimizu A. Relative quantification of glycated cu-Zn superoxide dismutase in erythrocytes by electrospray ionization mass spectrometry. Biochim Biophys Acta. 1999;1426(3):483–90.
Article
PubMed
CAS
Google Scholar
Ogawa K, Kanematsu S, Takabe K, Asada K. Attachment of CuZn-superoxide dismutase to thylakoid membranes at the site of superoxide generation (PSI) in spinach chloroplasts: cetection by immuno-gold labeling after rapid freezing and substituion method. Plant Cell Physiol. 1995;36(4):565–73.
CAS
Google Scholar
Rodríguez-García MI, García A. Differentiation of the plastid population during microsporogenesis and the development of the pollen grain in the Liliaceae. Biol Cell. 1978;33:63–70.
Google Scholar
Cheung AY, Wu HM. Structural and functional compartmentalization in pollen tubes. J Exp Bot. 2007;58(1):75–82.
Article
PubMed
CAS
Google Scholar
Tuteja N, Mishra P, Yadav S, Tajrishi M, Baral S, Sabat SC. Heterologous expression and biochemical characterization of a highly active and stable chloroplastic CuZn-superoxide dismutase from Pisum sativum. BMC Biotechnol. 2015;15:3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Woo EJ, Dunwell JM, Goodenough PW, Marvier AC, Pickersgill RW. Germin is a manganese containing homohexamer with oxalate oxidase and superoxide dismutase activities. Nat Struct Biol. 2000;7(11):1036–40.
Article
PubMed
CAS
Google Scholar
León-Galván F, de Jesús Joaquín-Ramos A, Torres-Pacheco I, de la Rosa AP B, Guevara-Olvera L, González-Chavira MM, Ocampo-Velazquez RV, Rico-García E, Guevara-González RG. A germin-like protein gene (CchGLP) of Capsicum chinense Jacq. is induced during incompatible interactions and displays Mn-superoxide dismutase activity. Int J Mol Sci. 2011;12(11):7301–13.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cheng X, Huang X, Liu S, Tang M, Hu W, Pan S. Characterization of germin-like protein with polyphenol oxidase activity from Satsuma mandarine. Biochem Biophys Res Commun. 2014;449(3):313–8.
Article
PubMed
CAS
Google Scholar
Huang N, Cheng X, Hu W, Pan S. Inactivation, aggregation, secondary and tertiary structural changes of germin-like protein in Satsuma mandarine with high polyphenol oxidase activity induced by ultrasonic processing. Biophys Chem. 2015;197:18–24.
Article
PubMed
CAS
Google Scholar
Szućko I, Filip E, Slominska-Walkowiak R, Skuza L. Polish: Wielofunkcyjne białka germiny i germino podobne u roślin. Postep Biol Komorki. 2012;39(2):289–300.
Villalba M, Rodríguez R, Batanero E. The spectrum of olive pollen allergens. From structures to diagnosis and treatment. Methods. 2014;66(1):44–54.
Article
PubMed
CAS
Google Scholar
Cruz F, Julca I, Gómez-Garrido J, Loska D, Marcet-Houben M, Cano E, Galán B, Frias L, Ribeca P, Derdak S, Gut M, Sánchez-Fernández M, García JL, Gut IG, Vargas P, Alioto TS, Gabaldón T. Genome sequence of the olive tree, Olea europaea. Gigascience. 2016;5:29.
Article
PubMed
PubMed Central
CAS
Google Scholar
Carmona R, Zafra A, Seoane P, Castro AJ, Guerrero-Fernández D, Castillo-Castillo T, Medina-García A, Cánovas FM, Aldana-Montes J, Navas-Delgado I, Alché JD, Claros MG. ReprOlive: a database with linked-data for the olive tree (Olea europaea L.) reproductive transcriptome. Front Plant Sci. 2015;11(6):625.
Google Scholar
Lin MW, Lin MT, Lin CT. Copper/zinc-superoxide dismutase from lemon cDNA and enzyme stability. J Agric Food Chem. 2002;50(25):7264–70.
Article
PubMed
CAS
Google Scholar
Rodriguez JA, Valentine JS, Eggers DK, Roe JA, Tiwari A, Brown RH Jr, Haywards LJ. Familial amyotrophic lateral sclerosis-associated mutations decrease the thermal atability of distinctly metallated species of human copper/zinc superoxide dismutase. J Biol Chem. 2002;277(18):15932–7.
Article
PubMed
CAS
Google Scholar
Hadji I, Marzouki MN, Ferraro D, Fasano E, Majdoub H, Pani G, Limam F. Purification and characterization of a cu, Zn-SOD from garlic (Allium sativum L.). Antioxidant effect on tumoral cell lines. Appl Biohemistry Biotechnol. 2007;143(2):129–41.
Article
CAS
Google Scholar
Mishra P, Dixit A, Ray M, Sabat SC. Mechanistic study of CuZn-SOD from Ipomoea carnea mutated at dimer interface: enhancement of peroxidase activity upon monomerization. Biochimie. 2014;97:181–93.
Article
PubMed
CAS
Google Scholar
Calamai M, Taddei N, Stefani M, Ramponi G, Chiti F. Relative influence of hydrophobicity and net charge in the aggregation of two homologous proteins. Biochemistry. 2003;42(51):15078–83.
Article
PubMed
CAS
Google Scholar
Zienkiewicz A, Rejón JD, Alché JD, Rodríguez-García MI, Castro AJ. A protocol for protein extraction from lipid-rich plant tissues suitable for electrophoresis. Methods Mol Biol. 2014;1072:85–91.
Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44(1):276–87.
Article
PubMed
CAS
Google Scholar
Gill SC, von Hippel PH. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989;182(2):319–26.
Article
PubMed
CAS
Google Scholar
Elias JE, Gygi SP. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods. 2007;4(3):207–14.
Article
PubMed
CAS
Google Scholar
Görg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 2000;21(6):1037–53.
Article
PubMed
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.
Article
PubMed
CAS
Google Scholar
Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22(2):195–201.
Article
PubMed
CAS
Google Scholar