Eder J, Cosio EG. Elicitors of plant defense responses. Int Rev Cytol. 1994;148:1–36.
Article
Google Scholar
Jones JD, Dangl JL. The plant immune system. Nature. 2006;444(7117):323.
Article
PubMed
CAS
Google Scholar
Pieterse CM, Schaller A, Mauch-Mani B, Conrath U. Signaling in plant resistance responses: divergence and cross-talk of defense pathways. In: Multigenic and induced systemic resistance in plants. Boston: Springer; 2006;166–96.
Zipfel C. Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol. 2009;12(4):414–20.
Article
PubMed
CAS
Google Scholar
Blumwald E, Aharon GS, Lam BC. Early signal transduction pathways in plant–pathogen interactions. Trends Plant Sci. 1998;3(9):342–6.
Article
Google Scholar
Nürnberger T, Scheel D. Signal transmission in the plant immune response. Trends Plant Sci. 2001;6(8):372–9.
Article
PubMed
Google Scholar
Fritig B, Heitz T, Legrand M. Antimicrobial proteins in induced plant defense. Curr Opin Immunol. 1998;10(1):16–22.
Article
PubMed
CAS
Google Scholar
Somssich IE, Hahlbrock K. Pathogen defence in plants—a paradigm of biological complexity. Trends Plant Sci. 1998;3(3):86–90.
Article
Google Scholar
Williamson B, Tudzynski B, Tudzynski P, van Kan JA. Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol. 2007;8(5):561–80.
Article
PubMed
CAS
Google Scholar
Mengiste T. Plant immunity to necrotrophs. Annu Rev Phytopathol. 2012;50:267–94.
Article
PubMed
CAS
Google Scholar
Elad Y, Williamson B, Tudzynski P, Delen N. Botrytis spp. and diseases they cause in agriculturalsystems–an introduction. Botrytis: Biology, pathology and control. Dordrecht: Springer; 2007:1–8.
van Kan JA. Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci. 2006;11(5):247–53.
Article
PubMed
CAS
Google Scholar
Repka V. Early defence responses induced by two distinct elicitors derived from a Botrytis cinerea in grapevine leaves and cell suspensions. Biol Plant. 2006;50(1):94–106.
Article
CAS
Google Scholar
Poinssot B, Vandelle E, Bentéjac M, Adrian M, Levis C, Brygoo Y, Garin J, Sicilia F, Coutos-Thévenot P, Pugin A. The endopolygalacturonase 1 from Botrytis cinerea activates grapevine defense reactions unrelated to its enzymatic activity. Mol Plant-Microbe Interact. 2003;16(6):553–64.
Article
PubMed
CAS
Google Scholar
Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G. A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc Natl Acad Sci. 2010;107(20):9452–7.
Article
PubMed
PubMed Central
Google Scholar
Ferrari S, Galletti R, Denoux C, De Lorenzo G, Ausubel FM, Dewdney J. Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol. 2007;144(1):367–79.
Article
PubMed
PubMed Central
CAS
Google Scholar
Noda J, Brito N, González C. The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity. BMC Plant Biol. 2010;10(1):38.
Article
PubMed
PubMed Central
CAS
Google Scholar
Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Ferrari S, Ausubel FM, Dewdney J. Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol Plant. 2008;1(3):423–45.
Article
PubMed
CAS
Google Scholar
Galletti R, Denoux C, Gambetta S, Dewdney J, Ausubel FM, De Lorenzo G, Ferrari S. The AtrbohD-mediated oxidative burst elicited by oligogalacturonides in Arabidopsis is dispensable for the activation of defense responses effective against Botrytis cinerea. Plant Physiol. 2008;148(3):1695–706.
Article
PubMed
PubMed Central
Google Scholar
Mengiste T, Laluk K, AbuQamar S. Mechanisms of induced resistance against B. Cinerea. In: Prusky D, Gullino ML, editors. Postharvest pathology. Dordrecht: Springer Netherlands; 2010. p. 13–30.
Google Scholar
Khan NU, Liu M, Yang X, Qiu D. Fungal elicitor MoHrip2 induces disease resistance in Rice leaves, triggering stress-related pathways. PLoS One. 2016;11(6):e0158112.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xu L, Zhu L, Tu L, Liu L, Yuan D, Jin L, Long L, Zhang X. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot. 2011;62(15):5607–21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang Y, Zhang Y, Qiu D, Zeng H, Guo L, Yang X. BcGs1, a glycoprotein from Botrytis cinerea, elicits defence response and improves disease resistance in host plants. Biochem Biophys Res Commun. 2015;457(4):627–34.
Article
PubMed
CAS
Google Scholar
Eudes A, Pollet B, Sibout R, Do C-T, Séguin A, Lapierre C, Jouanin L. Evidence for a role of AtCAD 1 in lignification of elongating stems of Arabidopsis thaliana. Planta. 2006;225(1):23–39.
Article
PubMed
CAS
Google Scholar
Bu B, Qiu D, Zeng H, Guo L, Yuan J, Yang X. A fungal protein elicitor PevD1 induces Verticillium wilt resistance in cotton. Plant Cell Rep. 2014;33(3):461–70.
Article
PubMed
CAS
Google Scholar
Asselbergh B, Curvers K, França SC, Audenaert K, Vuylsteke M, Van Breusegem F, Höfte M. Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol. 2007;144(4):1863–77.
Article
PubMed
PubMed Central
CAS
Google Scholar
Smit F, Dubery IA. Cell wall reinforcement in cotton hypocotyls in response to a Verticillium dahliae elicitor. Phytochemistry. 1997;44(5):811–5.
Article
CAS
Google Scholar
Mitsuhara I, Iwai T, Seo S, Yanagawa Y, Kawahigasi H, Hirose S, Ohkawa Y, Ohashi Y. Characteristic expression of twelve rice PR1 family genes in response to pathogen infection, wounding, and defense-related signal compounds (121/180). Mol Gen Genomics. 2008;279(4):415–27.
Article
CAS
Google Scholar
Prins TW, Tudzynski P, von Tiedemann A, Tudzynski B, Ten Have A, Hansen ME, Tenberge K, van KanJA. Infection strategies of Botrytis cinerea and related necrotrophic pathogens. Fungal Pathology. Netherlands: Springer; 2000:33–64.
Liu J-J, Ekramoddoullah AK. The family 10 of plant pathogenesis-related proteins: their structure, regulation, and function in response to biotic and abiotic stresses. Physiol Mol Plant Pathol. 2006;68(1):3–13.
Article
CAS
Google Scholar
Lu S, Friesen TL, Faris JD. Molecular characterization and genomic mapping of the pathogenesis-related protein 1 (PR-1) gene family in hexaploid wheat (Triticum aestivum L.). Mol Gen Genomics. 2011;285(6):485.
Article
CAS
Google Scholar
Shatters RG, Boykin LM, Lapointe SL, Hunter WB, Weathersbee A. Phylogenetic and structural relationships of the PR5 gene family reveal an ancient multigene family conserved in plants and select animal taxa. J Mol Evol. 2006;63(1):12–29.
Article
PubMed
CAS
Google Scholar
Bradley DJ, Kjellbom P, Lamb CJ. Elicitor-and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell. 1992;70(1):21–30.
Article
PubMed
CAS
Google Scholar
McKenzie C, Shatters RG, Doostdar H, Lee S, Inbar M, Mayer RT. Effect of geminivirus infection and Bemisia infestation on accumulation of pathogenesis-related proteins in tomato. Arch Insect Biochem Physiol. 2002;49(4):203–14.
Article
PubMed
CAS
Google Scholar
Keller B. Structural cell wall proteins. Plant Physiol. 1993;101(4):1127.
Article
PubMed
PubMed Central
CAS
Google Scholar
Van Loon L, Van Strien E. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol. 1999;55(2):85–97.
Article
CAS
Google Scholar
Kasprzewska A. Plant chitinases-regulation and function. Cell Mol Biol Lett. 2003;8(3):809–24.
PubMed
CAS
Google Scholar
Floerl S, Majcherczyk A, Possienke M, Feussner K, Tappe H, Gatz C, Feussner I, Kües U, Polle A. Verticillium longisporum infection affects the leaf apoplastic proteome, metabolome, and cell wall properties in Arabidopsis thaliana. PLoS One. 2012;7(2):e31435.
Article
PubMed
PubMed Central
CAS
Google Scholar
Passardi F, Penel C, Dunand C. Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci. 2004;9(11):534–40.
Article
PubMed
CAS
Google Scholar
Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H. A large family of class III plant peroxidases. Plant Cell Physiol. 2001;42(5):462–8.
Article
PubMed
CAS
Google Scholar
Barceló AR. Lignification in plant cell walls. Int Rev Cytol. 1997;176:87–132.
Article
Google Scholar
Blee KA, Choi JW, O'Connell AP, Schuch W, Lewis NG, Bolwell GP. A lignin-specific peroxidase in tobacco whose antisense suppression leads to vascular tissue modification. Phytochemistry. 2003;64(1):163–76.
Article
PubMed
CAS
Google Scholar
Li Y, Kajita S, Kawai S, Katayama Y, Morohoshi N. Down-regulation of an anionic peroxidase in transgenic aspen and its effect on lignin characteristics. J Plant Res. 2003;116(3):175–82.
Article
PubMed
CAS
Google Scholar
Díaz J, Bernal A, Pomar F, Merino F. Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annuum L.) seedlings in response to copper stress and its relation to lignification. Plant Sci. 2001;161(1):179–88.
Article
Google Scholar
El Mansouri I, Mercado JA, Santiago-Dómenech N, Pliego-Alfaro F, Valpuesta V, Quesada MA. Biochemical and phenotypical characterization of transgenic tomato plants overexpressing a basic peroxidase. Physiol Plant. 1999;106(4):355–62.
Article
CAS
Google Scholar
Fraser CM, Chapple C. The phenylpropanoid pathway in Arabidopsis. The Arabidopsis Book. 2011;9(e0152):e0152.
Tognolli M, Penel C, Greppin H, Simon P. Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene. 2002;288(1):129–38.
Article
PubMed
CAS
Google Scholar
Valerio P, Pereira MM, Goes AM, Leite MF. The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials. 2004;25(15):2941–8.
Article
PubMed
CAS
Google Scholar
Welinder KG, Justesen AF, Kjærsgård IV, Jensen RB, Rasmussen SK, Jespersen HM, Duroux L. Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana. FEBS J. 2002;269(24):6063–81.
CAS
Google Scholar
Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373–99.
Article
PubMed
CAS
Google Scholar
Lamb C, Dixon RA. The oxidative burst in plant disease resistance. Annu Rev Plant Biol. 1997;48(1):251–75.
Article
CAS
Google Scholar
Khatun S, Cakilcioglu U, Chakrabarti M, Ojha S, Chatterjee NC. Biochemical defense against die-back disease of a traditional medicinal plant Mimusops elengi Linn. Eur J Med Plant. 2011;2(2).
Bestwick CS, Brown IR, Mansfield JW. Localized changes in peroxidase activity accompany hydrogen peroxide generation during the development of a nonhost hypersensitive reaction in lettuce. Plant Physiol. 1998;118(3):1067–78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Levine A, Tenhaken R, Dixon R, Lamb C. H 2 O 2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994;79(4):583–93.
Article
PubMed
CAS
Google Scholar
Shetty NP, Kristensen B, Newman M-A, Møller K, Gregersen PL, Jørgensen HL. Association of hydrogen peroxide with restriction of Septoria tritici in resistant wheat. Physiol Mol Plant Pathol. 2003;62(6):333–46.
Article
CAS
Google Scholar
Borden S, Higgins VJ. Hydrogen peroxide plays a critical role in the defence response of tomato to Cladosporium fulvum. Physiol Mol Plant Pathol. 2002;61(4):227–36.
Article
CAS
Google Scholar
Mellersh DG, Foulds IV, Higgins VJ, Heath MC. H2O2 plays different roles in determining penetration failure in three diverse plant–fungal interactions. Plant J. 2002;29(3):257–68.
Article
PubMed
CAS
Google Scholar
Mlíčková K, Luhová L, Lebeda A, Mieslerová B, Peč P. Reactive oxygen species generation and peroxidase activity during Oidium neolycopersici infection on Lycopersicon species. Plant Physiol Biochem. 2004;42(10):753–61.
Article
PubMed
CAS
Google Scholar
Makkar H, Francis G, Becker K. Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. animal. 2007;1(9):1371–91.
Article
PubMed
CAS
Google Scholar
Azaiez A, Boyle B, Levée V, Séguin A. Transcriptome profiling in hybrid poplar following interactions with Melampsora rust fungi. Mol Plant-Microbe Interact. 2009;22(2):190–200.
Article
PubMed
CAS
Google Scholar
Uppalapati SR, Marek SM, Lee H-K, Nakashima J, Tang Y, Sledge MK, Dixon RA, Mysore KS. Global gene expression profiling during Medicago truncatula–Phymatotrichopsis omnivora interaction reveals a role for jasmonic acid, ethylene, and the flavonoid pathway in disease development. Mol Plant-Microbe Interact. 2009;22(1):7–17.
Article
PubMed
CAS
Google Scholar
Zabala G, Zou J, Tuteja J, Gonzalez DO, Clough SJ, Vodkin LO. Transcriptome changes in the phenylpropanoid pathway of Glycine max in response to Pseudomonas syringae infection. BMC Plant Biol. 2006;6(1):26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Robbins ML, Roy A, Wang P-H, Gaffoor I, Sekhon RS, Marcia MO, Rohila JS, Chopra S. Comparative proteomics analysis by DIGE and iTRAQ provides insight into the regulation of phenylpropanoids in maize. J Proteome. 2013;93:254–75.
Article
CAS
Google Scholar
Ji H, Kyndt T, He W, Vanholme B, Gheysen G. β-Aminobutyric acid–induced resistance against root-knot nematodes in rice is based on increased basal defense. Mol Plant-Microbe Interact. 2015;28(5):519–33.
Article
PubMed
CAS
Google Scholar
Lewis NG, Yamamoto E. Lignin: occurrence, biogenesis and biodegradation. Annu Rev Plant Biol. 1990;41(1):455–96.
Article
CAS
Google Scholar
Nicholson RL, Hammerschmidt R. Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol. 1992;30(1):369–89.
Article
CAS
Google Scholar
Bonello P, Storer AJ, Gordon TR, Wood DL, Heller W. Systemic effects of Heterobasidion annosum on ferulic acid glucoside and lignin of presymptomatic ponderosa pine phloem, and potential effects on bark-beetle-associated fungi. J Chem Ecol. 2003;29(5):1167–82.
Article
PubMed
CAS
Google Scholar
Gheysen G, Jones J. Molecular aspects of plant-nematode interactions. Plant nematol. 2006:234–54.
Miedes E, Vanholme R, Boerjan W, Molina A. The role of the secondary cell wall in plant resistance to pathogens. Front Plant Sci. 2014;5:358