Lobell DB, Schlenker W, Costa-Roberts J. Climate trends and global crop production since 1980. Science. 2011;333(6042):616–20.
Article
CAS
PubMed
Google Scholar
Lesk C, Rowhani P, Ramankutty N. Influence of extreme weather disasters on global crop production. Nature. 2016;529(7584):84–7.
Article
CAS
PubMed
Google Scholar
Walbot V. How plants cope with temperature stress. BMC Biol. 2011;9(1):79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qu A, Ding Y, Jiang Q, Zhu C. Molecular mechanisms of the plant heat stress response. Biochem Bioph Res Co. 2013;432(2):203–7.
Article
CAS
Google Scholar
Rushton PJ, Bokowiec MT, Laudeman TW, Brannock JF, Chen X, Timko MPTOBFAC. The database of tobacco transcription factors. BMC Bioinformatics. 2008;9:53.
Article
PubMed
PubMed Central
Google Scholar
Baldoni E, Genga A, Cominelli E, Plant MYB. Transcription factors: their role in drought response mechanisms. Int J Mol Sci. 2015;16(7):15811–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agarwal PK, Agarwal P, Reddy MK, Sopory SK. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 2006;25(12):1263–74.
Article
CAS
PubMed
Google Scholar
Shao H, Wang H, Tang XNAC. Transcription factors in plant multiple abiotic stress responses: progress and prospects. Front Plant Sci. 2015;6:902.
Article
PubMed
PubMed Central
Google Scholar
Banerjee A, Roychoudhury A. Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma. 2017;254(1):3–16.
Article
CAS
PubMed
Google Scholar
Liu Z, Xin M, Qin J, Peng H, Ni Z, Yao Y, et al. Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biol. 2015;15:152.
Article
PubMed
PubMed Central
Google Scholar
Zhang X, Rerksiri W, Liu A, Zhou X, Xiong H, Xiang J, et al. Transcriptome profile reveals heat response mechanism at molecular and metabolic levels in rice flag leaf. Gene. 2013;530(2):185–92.
Article
CAS
PubMed
Google Scholar
Yanhui C, Xiaoyuan Y, Kun H, Meihua L, Jigang L, Zhaofeng G, et al. The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol. 2006;60(1):107–24.
Article
PubMed
Google Scholar
Du H, Yang SS, Liang Z, Feng BR, Liu L, Huang YB, et al. Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biol. 2012;12:106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu R, Wang Y, Zheng H, Lu W, Wu C, Huang J, et al. Salt-induced transcription factor MYB74 is regulated by the RNA-directed DNA methylation pathway in Arabidopsis. J Exp Bot. 2015;66(19):5997–6008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cominelli E, Sala T, Calvi D, Gusmaroli G, Tonelli C. Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J. 2008;53(1):53–64.
Article
CAS
PubMed
Google Scholar
Lippold F, Sanchez DH, Musialak M, Schlereth A, Scheible WR, Hincha DK, et al. AtMyb41 regulates transcriptional and metabolic responses to osmotic stress in Arabidopsis. Plant Physiol. 2009;149(4):1761–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ding Z, Li S, An X, Liu X, Qin H, Wang D. Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. J Genet Genomics. 2009;36(1):17–29.
Article
CAS
PubMed
Google Scholar
Yang A, Dai X, Zhang WHA. R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot. 2012;63(7):2541–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiong H, Li J, Liu P, Duan J, Zhao Y, Guo X, et al. Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS One. 2014;9(3):e92913.
Article
PubMed
PubMed Central
Google Scholar
Chen T, Li W, Hu X, Guo J, Liu A, Zhang BA. Cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress. Plant Cell Physiol. 2015;56(5):917–29.
Article
CAS
PubMed
Google Scholar
Qin Y, Wang M, Tian Y, He W, Han L, Xia G. Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis. Mol Biol Rep. 2012;39(6):7183–92.
Article
CAS
PubMed
Google Scholar
Mao X, Jia D, Li A, Zhang H, Tian S, Zhang X, et al. Transgenic expression of TaMYB2A confers enhanced tolerance to multiple abiotic stresses in Arabidopsis. Funct Integr Genomics. 2011;11(3):445–65.
Article
CAS
PubMed
Google Scholar
Zhang L, Liu G, Zhao G, Xia C, Jia J, Liu X, et al. Characterization of a wheat R2R3-MYB transcription factor gene, TaMYB19, involved in enhanced abiotic stresses in Arabidopsis. Plant Cell Physiol. 2014;55(10):1802–12.
Article
CAS
PubMed
Google Scholar
Zhang L, Zhao G, Xia C, Jia J, Liu X, Kong XA. Wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis. J Exp Bot. 2012;63(16):5873–85.
Article
CAS
PubMed
Google Scholar
Feng C, Andreasson E, Maslak A, Mock HP, Mattsson O, Mundy J. Arabidopsis MYB68 in development and responses to environmental cues. Plant Sci. 2004;167(5):1099–107.
Article
CAS
Google Scholar
Meng X, Wang JR, Wang GD, Liang XQ, Li XD, Meng QW. An R2R3-MYB gene, LeAN2, positively regulated the thermo-tolerance in transgenic tomato. J Plant Physiol. 2015;175:1–8.
Article
CAS
PubMed
Google Scholar
El-Kereamy A, Bi YM, Ranathunge K, Beatty PH, Good AG, Rothstein SJ. The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PLoS One. 2012;7(12):e52030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Casaretto JA, El-Kereamy A, Zeng B, Stiegelmeyer SM, Chen X, Bi YM, et al. Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance. BMC Genomics. 2016;17:312.
Article
PubMed
PubMed Central
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947–8.
Article
CAS
PubMed
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30(12):2725–2729.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar
Zhao Y, Tian X, Li Y, Zhang L, Guan P, Kou X, et al. Molecular and functional characterization of wheat ARGOS genes influencing plant growth and stress tolerance. Front Plant Sci. 2017;8:170.
PubMed
PubMed Central
Google Scholar
Yoo SD, Cho YH, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc. 2007;2(7):1565–72.
Article
CAS
PubMed
Google Scholar
Shan Q, Wang Y, Li J, Gao C. Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc. 2014;9(10):2395–410.
Article
CAS
PubMed
Google Scholar
Bechtold N, Pelletier G. Planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol. 1998;82(10):259–66.
CAS
PubMed
Google Scholar
Li Y, Wang C, Liu X, Song J, Li H, Sui Z, et al. Up-regulating the abscisic acid inactivation gene ZmABA8ox1b contributes to seed germination heterosis by promoting cell expansion. J Exp Bot. 2016;67(9):2889–900.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bi H, Luang S, Li Y, Bazanova N, Morran S, Song Z, et al. Identification and characterization of wheat drought-responsive MYB transcription factors involved in the regulation of cuticle biosynthesis. J Exp Bot. 2016;67(18):5363–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feller A, Machemer K, Braun EL, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J. 2011;66(1):94–116.
Article
CAS
PubMed
Google Scholar
Chen N, Yang Q, Pan L, Chi X, Chen M, Hu D, et al. Identification of 30 MYB transcription factor genes and analysis of their expression during abiotic stress in peanut (Arachis hypogaea L.). Gene. 2014;533(1):332–45.
Article
CAS
PubMed
Google Scholar
Yu L, Chen H, Guan Q, Ma X, Zheng X, Zou C, et al. AtMYB2 transcription factor can interact with the CMO promoter and regulate its downstream gene expression. Biotechnol Lett. 2012;34(9):1749–55.
Article
CAS
PubMed
Google Scholar
Lotkowska ME, Tohge T, Fernie AR, Xue GP, Balazadeh S, Mueller-Roeber B. The Arabidopsis transcription factor MYB112 promotes anthocyanin formation during salinity and under high light stress. Plant Physiol. 2015;169(3):1862–80.
PubMed
PubMed Central
Google Scholar
Lee HG, Choi YR, Seo PJ. Increased STM expression is associated with drought tolerance in Arabidopsis. J Plant Physiol. 2016;201:79–84.
Article
CAS
PubMed
Google Scholar
Sirichandra C, Wasilewska A, Vlad F, Valon C, Leung J. The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. J Exp Bot. 2009;60(5):1439–63.
Article
CAS
PubMed
Google Scholar
Yue Y, Zhang M, Zhang J, Tian X, Duan L, Li Z. Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton. J Exp Bot. 2012;63(10):3741–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cui MH, Yoo KS, Hyoung S, Nguyen HT, Kim YY, Kim HJ, et al. An Arabidopsis R2R3-MYB transcription factor, AtMYB20, negatively regulates type 2C serine/threonine protein phosphatases to enhance salt tolerance. FEBS Lett. 2013;587(12):1773–8.
Article
CAS
PubMed
Google Scholar
Guo M, JP L, Zhai YF, Chai WG, Gong ZH, Genome-wide LMH. Analysis, expression profile of heat shock factor gene family (CaHsfs) and characterisation of CaHsfA2 in pepper (Capsicum annuum L.). BMC Plant Biol. 2015;15:151.
Article
PubMed
PubMed Central
Google Scholar
Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell. 2003;15(1):63–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seo PJ, Xiang F, Qiao M, Park J, Lee YN, Kim S, et al. The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol. 2009;151(1):275–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koornneef M, Meinke D. The development of Arabidopsis as a model plant. Plant J. 2010;61(6):909–21.
Article
CAS
PubMed
Google Scholar
Abogadallah GM, Nada RM, Malinowski R, Quick P. Overexpression of HARDY, an AP2/ERF gene from Arabidopsis, improves drought and salt tolerance by reducing transpiration and sodium uptake in transgenic Trifolium alexandrinum L. Planta. 2011;233(6):1265–76.
Article
CAS
PubMed
Google Scholar
Seki M, Umezawa T, Urano K, Shinozaki K. Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol. 2007;10(3):296–302.
Article
CAS
PubMed
Google Scholar
Yang T, Zhang L, Hao H, Zhang P, Zhu H, Cheng W, Wang Y, et al. Nuclear-localized AtHSPR links abscisic acid-dependent salt tolerance and antioxidant defense in Arabidopsis. Plant J. 2015;84(6):1274–94.
Article
CAS
PubMed
Google Scholar
Li J, Li Y, Yin Z, Jiang J, Zhang M, Guo X, et al. OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H2O2 signalling in rice. Plant Biotechnol J. 2017;15(2):183–96.
Article
CAS
PubMed
Google Scholar
Suzuki N, Bassil E, Hamilton JS, Inupakutika MA, Zandalinas SI, Tripathy D, et al. ABA is required for plant acclimation to a combination of salt and heat stress. PLoS One. 2016;11(1):e147625.
Google Scholar
Larkindale J, Knight MR. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol. 2002;128(2):682–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zandalinas SI, Balfagon D, Arbona V, Gomez-Cadenas A, Inupakutika MA, Mittler RABA. Is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress. J Exp Bot. 2016;67(18):5381–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Zhang C, Wei C, Liu X, Wang M, Yu F, et al. The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice. Plant Physiol. 2016;170(1):429–43.
Article
CAS
PubMed
Google Scholar
Suzuki N, Miller G, Salazar C, Mondal HA, Shulaev E, Cortes DF, et al. Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. Plant Cell. 2013;25(9):3553–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang YC, Niu CY, Yang CR, Jinn TL. The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiol. 2016;172(2):1182–99.
CAS
PubMed
PubMed Central
Google Scholar
Qiang L, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell. 1998;10(8):1391–406.
Article
Google Scholar