Kim DS, Lee IS, Jang CS, Lee SJ, Song HS, Lee YI, Seo YWAEC. Resistant rice mutants induced by gamma-ray irradiation may include both elevated lysine production and increased activity of stress related enzymes. Plant Sci. 2004;167:305–16.
CAS
Google Scholar
Misra P, Datta SK, Chakrabarty D. Mutation in flower colour and shape of Chrysanthemum morifolium induced by γ-radiation. Biol Plant. 2003;47:153–6.
Google Scholar
Sen A, Alikamanoglu S. Characterization of drought-tolerant sugar beet mutants induced with gamma radiation using biochemical analysis and isozyme variations. J Sci Food Agr. 2014;94:367–72.
CAS
Google Scholar
Ben Mustapha M, Bousselmi M, Jerbi T, Ben Bettalieb N, Fattouch S. Gamma radiation effects on microbiological, physico-chemical and antioxidant properties of Tunisian millet (Pennisetum Glaucum L.R.Br.). Food Chem. 2014;154:230–7.
CAS
PubMed
Google Scholar
Mahrouz M, Lacroix M, D'Aprano G, Oufedjikh H, Boubekri C, Gagnon M. Effect of gamma-irradiation combined with washing and waxing treatment on physicochemical properties, vitamin C, and organoleptic quality of Citrus clementina Hort. Ex. Tanaka. J Agr Food Chem. 2002;50:7271–6.
CAS
Google Scholar
Kumar M, Ahuja S, Dahuja A, Kumar R, Singh B. Gamma radiation protects fruit quality in tomato by inhibiting the production of reactive oxygen species (ROS) and ethylene. J Radioanal Nucl Chem. 2014;301:871–80.
CAS
Google Scholar
Wright EG, Coates PJ. Untargeted effects of ionizing radiation: implications for radiation pathology. Mutat Res-Fund Mol M. 2006;597:119–32.
CAS
Google Scholar
Britt AB. Molecular genetics of DNA repair in higher plants. Trends Plant Sci. 1999;4:20–5.
CAS
PubMed
Google Scholar
Sachs RK, Hlatky LR, Trask BJ. Radiation-produced chromosome aberrations- olourful clues. Trends Genet. 2000;16:143–6.
CAS
PubMed
Google Scholar
Kovacs E, Keresztes A. Effect of gamma and UV-B/C radiation on plant cells. Micron. 2002;33:199–210.
CAS
PubMed
Google Scholar
Wi SG, Chung BY, Kim J-S, Kim J-H, Baek M-H, Lee J-W, Kim YS. Effects of gamma irradiation on morphological changes and biological responses in plants. Micron. 2007;38:553–64.
CAS
PubMed
Google Scholar
Kim JH, Moon YR, Lee MH, Kim JH, Wi SG, Park BJ, Kim CS, Chung BY. Photosynthetic capacity of Arabidopsis plants at the reproductive stage tolerates gamma irradiation. J Radiat Res. 2011;52:441–9.
CAS
PubMed
Google Scholar
Moussa HR, Jaleel CA. Physiological effects of glycinebetaine on gamma-irradiated stressed fenugreek plants. Acta Physiol Plant. 2011;33:1135–40.
CAS
Google Scholar
Bakht J, Bano A, Dominy P. The role of abscisic acid and low temperature in chickpea (Cicer arietinum) cold tolerance. II. Effects on plasma membrane structure and function. J Exp Bot. 2006;57:3707–15.
CAS
PubMed
Google Scholar
Li Y, Zheng G, Jia Y, Yu X, Zhang X, Yu B, Wang D, Zheng Y, Tian X, Li W. Acyl chain length of phosphatidylserine is correlated with plant lifespan. PLoS One. 2014;9:e103227.
PubMed
PubMed Central
Google Scholar
Zheng G, Tian B, Zhang F, Tao F, Li W. Plant adaptation to frequent alterations between high and low temperatures: remodelling of membrane lipids and maintenance of unsaturation levels. Plant Cell Environ. 2011;34:1431–42.
CAS
PubMed
PubMed Central
Google Scholar
Moellering ER, Muthan B, Benning C. Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science. 2010;330:226–8.
CAS
PubMed
Google Scholar
Zheng G, Tian B, Li W. Membrane lipid remodelling of Meconopsis racemosa after its introduction into lowlands from an alpine environment. PLoS One. 2014;9:e106614.
PubMed
PubMed Central
Google Scholar
Jia YX, Tao FQ, Li WQ. Lipid profiling demonstrates that suppressing Arabidopsis phospholipase D delta retards ABA-promoted leaf senescence by attenuating lipid degradation. PLoS One. 2013;8:e65687.
CAS
PubMed
PubMed Central
Google Scholar
Bargmann BOR, Laxalt AM, ter Riet B, van Schooten B, Merquiol E, Testerink C, Haring MA, Bartels D, Munnik T, Multiple PLD. Required for high salinity and water deficit tolerance in plants. Plant Cell Physiol. 2009;50:78–89.
CAS
PubMed
Google Scholar
Hong YY, Zhang WH, Wang XM, Phospholipase D. Phosphatidic acid signalling in plant response to drought and salinity. Plant Cell Environ. 2010;33:627–35.
CAS
PubMed
Google Scholar
Li W, Li M, Zhang W, Welti R, Wang X. The plasma membrane-bound phospholipase Dδ enhances freezing tolerance in Arabidopsis thaliana. Nature. Biotechnol. 2004;22:427–33.
Google Scholar
van Leeuwen W, Ökrész L, Bögre L, Munnik T. Learning the lipid language of plant signalling. Trends Plant Sci. 2004;9:378–84.
CAS
PubMed
Google Scholar
Zhang Y, Zhu H, Zhang Q, Li M, Yan M, Wang R, Wang L, Welti R, Zhang W, Wang X. Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal cosure in Arabidopsis. Plant Cell. 2009;21:2357–77.
CAS
PubMed
PubMed Central
Google Scholar
Motes CM, Pechter P, Yoo CM, Wang YS, Chapman KD, Blancaflor EB. Differential effects of two phospholipase D inhibitors, 1-butanol and N-acylethanolamine, on in vivo cytoskeletal organization and Arabidopsis seedling growth. Protoplasma. 2005;226:109–23.
CAS
PubMed
Google Scholar
CX Q, Liu C, Gong XL, Li CX, Hong MM, Wang L, Hong FS. Impairment of maize seedling photosynthesis caused by a combination of potassium deficiency and salt stress. Environ Exp Bot. 2012;75:134–41.
Google Scholar
Li W, Wang R, Li M, Li L, Wang C, Welti R, Wang X. Differential degradation of extraplastidic and plastidic lipids during freezing and post-freezing recovery in Arabidopsis thaliana. J Biol Chem. 2008;283:461–8.
CAS
PubMed
Google Scholar
Fan L, Zheng SQ, Wang XM. Antisense suppression of phospholipase D alpha retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell. 1997;9:2183–96.
CAS
PubMed
PubMed Central
Google Scholar
Voisine R, Vezina LP, Willemot C. Induction of senescence-like deterioration of microsomal-membranes from cauliflower by free-radicals generated during gamma-irradiation. Plant Physiol. 1991;97:545–50.
CAS
PubMed
PubMed Central
Google Scholar
Kim JB, Kim SH, Ha BK, Kang SY, Jang CS, Seo YW, Kim DS. Differentially expressed genes in response to gamma-irradiation during the vegetative stage in Arabidopsis thaliana. Mol Biol Rep. 2014;41:2229–41.
CAS
PubMed
Google Scholar
Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou H-E, Rajashekar CB, Williams TD, Wang X. Profiling membrane lipids in plant stress responses: role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. J Biol Chem. 2002;277:31994–2002.
CAS
PubMed
Google Scholar
Wang X. Lipid signaling. Curr Opin Plant Biol. 2004;7:329–36.
CAS
PubMed
Google Scholar
Asavasanti S, Ersus S, Ristenpart W, Stroeve P, Barrett DM. Critical electric field strengths of onion tissues treated by pulsed electric fields. J Food Sci 2010;75:E433-E443.
CAS
PubMed
Google Scholar
Eich J, Durholt H, Steger-Hartmann T, Wagner E. Specific detection of membrane-toxic substances with a conductivity assay. Ecotox Environ Safe. 2000;45:228–35.
CAS
Google Scholar
Qin C, Wang X. The Arabidopsis phospholipase D family. Characterization of a calcium-independent and phosphatidylcholine-selective PLD zeta 1 with distinct regulatory domains. Plant Physiol. 2002;128:1057–68.
CAS
PubMed
PubMed Central
Google Scholar
Dörmann P, Benning C. Galactolipids rule in seed plants. Trends Plant Sci. 2002;7:112–8.
PubMed
Google Scholar
BZ Y, Li WQ. Comparative profiling of membrane lipids during water stress in Thellungiella Salsuginea and its relative Arabidopsis thaliana. Phytochemistry. 2014;108:77–86.
Google Scholar
Zheng GW, Li LX, Li WQ. Glycerolipidome responses to freezing- and chilling-induced injuries: examples in Arabidopsis and rice. BMC Plant Biol. 2016;16:70.
PubMed
PubMed Central
Google Scholar
Gururani MA, Venkatesh J, Tran LSP. Regulation of photosynthesis during abiotic stress-induced Photoinhibition. Mol Plant. 2015;8:1304–20.
CAS
PubMed
Google Scholar
Jia Y, Li W. Characterisation of lipid changes in ethylene-promoted senescence and its retardation by suppression of phospholipase Ddelta in Arabidopsis leaves. Front Plant Sci. 2015;6:1045.
PubMed
PubMed Central
Google Scholar
Zhang WH, Wang CX, Qin CB, Wood T, Olafsdottir G, Welti R, Wang XM. The oleate-stimulated phospholipase D, PLD delta, and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis. Plant Cell. 2003;15:2285–95.
CAS
PubMed
PubMed Central
Google Scholar
Duan B, Lu Y, Yin C, Junttila O, Li C. Physiological response to drought and shade in two contrasting Picea asperata populations. Physiol Plant. 2005;124:476–84.
CAS
Google Scholar
Welti R, Shah J, Li WQ, Li MY, Chen JP, Burke JJ, Fauconnier ML, Chapman K, Chye ML, Wang XM. Plant lipidomics: discerning biological function by profiling plant complex lipids using mass spectrometry. Front Biosci. 2007;12:2494–506.
CAS
PubMed
Google Scholar