Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. Food security: the challenge of feeding 9 billion people. Science. 2010;327:812–8.
Article
CAS
PubMed
Google Scholar
Hoffmann M, Hilton-Taylor C, Angulo A, Bohm M, Brooks TM, Butchart SH, Carpenter KE, Chanson J, Collen B, Cox NA, et al. The impact of conservation on the status of the world's vertebrates. Science. 2010;330:1503–9.
Article
CAS
PubMed
Google Scholar
Sedbrook JC, Phippen WB, Marks MD. New approaches to facilitate rapid domestication of a wild plant to an oilseed crop: example pennycress (Thlaspi arvense L.). Plant Sci. 2014;227:122–32.
Article
CAS
PubMed
Google Scholar
Fan J, Shonnard DR, Kalnes TN. P.B. J, S. R: a life cycle assessment of pennycress (Thlaspi arvense L.) -derived jet fuel and diesel. Biomass Bioenergy. 2013;55:87–100.
Article
CAS
Google Scholar
Johnson GA, Kantar MB, Betts KJ, Wyse DL. Field pennycress production and weed control in a double crop system with soybean in Minnesota. Agron J. 2015;107:532–40.
Article
Google Scholar
Dean JE, Weil RR. Brassica cover crops for nitrogen retention in the mid-Atlantic coastal plain. J Environ Qual. 2009;38:520–8.
Article
CAS
PubMed
Google Scholar
Snapp SS, Swinton SM, Labarta R, Mutch D, Black JR, Leep R, Nyiraneza J, O'Neil K. Evaluating cover crops for benefits, costs and performance within cropping system niches. Agron J. 2005;97:322–32.
Google Scholar
Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T. Importance of pollinators in changing landscapes for world crops. P Roy Soc B-Biol Sci. 2007;274:303–13.
Article
Google Scholar
Calderone NW. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992-2009. PLoS One. 2012;7:e37235.
Article
CAS
PubMed
PubMed Central
Google Scholar
National Pollinator Research Action Plan. http://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/Pollinator%20Research%20Action%20Plan%202015.pdf.
Eberle CA, Thom MD, Nemec KT, Forcellaa F, Lundgren JG, Gesch RW, Riedell WE, Papiernik SK, Wagner A, Peterson DH, et al. Using pennycress, camelina, and canola cash cover crops to provision pollinators. Ind Crop Prod. 2015;75:20–5.
Article
Google Scholar
Goulson D, Nicholls E, Botias C, Rotheray EL. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science. 2015;347:1255957.
Article
PubMed
Google Scholar
Mattila HR, Otis GW. The effects of pollen availability during larval development on the behaviour and physiology of spring-reared honey bee workers. Apidologie. 2006;37:533–46.
Article
Google Scholar
Zheng BL, ZF W, BH X. The effects of dietary protein levels on the population growth, performance, and physiology of honey bee workers during early spring. J Insect Sci. 2014;14:191.
PubMed
PubMed Central
Google Scholar
Davis AR, Fowke LC, Sawhney VK, Low NH. Floral nectar secretion and ploidy in Brassica rapa and B. napus (Brassicaceae) II. Quantified variability of nectary structure and function in rapid-cycling lines. Ann Bot. 1996;77:223–34.
Article
Google Scholar
Davis AR, Pylatuik JD, Paradis JC, Low NH. Nectar-carbohydrate production and composition vary in relation to nectary anatomy and location within individual flowers of several species of Brassicaceae. Planta. 1998;205:305–18.
Article
CAS
PubMed
Google Scholar
Bowman JL. Arabidopsis: an atlas of morphology and development. New York: Springer-Verlag New York, Inc.; 1994.
Book
Google Scholar
Hampton M, WW X, Kram BW, Chambers EM, Ehrnriter JS, Gralewski JH, Joyal T, Carter CJ. Identification of differential gene expression in Brassica rapa nectaries through expressed sequence tag analysis. PLoS One. 2010;5:e8782.
Article
PubMed
PubMed Central
Google Scholar
Kram BW, WW X, Carter CJ. Uncovering the Arabidopsis thaliana nectary transcriptome: investigation of differential gene expression in floral nectariferous tissues. BMC Plant Biol. 2009;9:92.
Article
PubMed
PubMed Central
Google Scholar
Bender R, Klinkenberg P, Jiang Z, Bauer B, Karypis G, Nguyen N, Perera MADN, Nikolau BJ, Carter CJ. Functional genomics of nectar production in the Brassicaceae. Flora. 2012;207:491–6.
Article
Google Scholar
Lin IW, Sosso D, Chen LQ, Gase K, Kim SG, Kessler D, Klinkenberg PM, Gorder MK, Hou BH, XQ Q, et al. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature. 2014;508:546–9.
Article
CAS
PubMed
Google Scholar
Ruhlmann JM, Kram BW, Carter CJ. CELL WALL INVERTASE 4 is required for nectar production in Arabidopsis. J Exp Bot. 2010;61:395–404.
Article
CAS
PubMed
Google Scholar
Davis AR, Gunning BES. The modified stomata of the floral nectary of Vicia faba L .1. Development, anatomy and ultrastructure. Protoplasma. 1992;166:134–52.
Article
Google Scholar
Bender RL, Fekete ML, Klinkenberg PM, Hampton M, Bauer B, Malecha M, Lindgren K. J AM, Perera MA, Nikolau BJ, Carter CJ: PIN6 is required for nectary auxin response and short stamen development. Plant J. 2013;74:893–904.
Article
CAS
PubMed
Google Scholar
Thom MD, Eberle CA, Forcella F, Gesch R, Weyers S, Lundgren JG. Nectar production in oilseeds: food for pollinators in an agricultural landscape. Crop Sci. 2016;56:727–39.
Article
CAS
Google Scholar
Kram BW, Carter CJ. Arabidopsis thaliana as a model for functional nectary analysis. Sex Plant Reprod. 2009;22:235–46.
Article
PubMed
Google Scholar
Teuber LR, Albertsen MC, Barnes DK, Heichel GH. Structure of floral nectaries of alfalfa (Medicago sativa L) in relation to nectar production. Am J Bot. 1980;67:433–9.
Article
Google Scholar
Davis AR, Gunning BES. The modified stomata of the floral nectary of Vicia faba L. 2. Stomatal number and distribution as selection criteria for breeding for high nectar sugar production. Acta Hort. 1991;288:329–35.
Article
Google Scholar
Davis AR, Gunning BES. The modified stomata of the floral nectary of Vicia faba L. .3. Physiological-aspects, including comparisons with foliar stomata. Bot Acta. 1993;106:241–53.
Article
CAS
Google Scholar
Dorn KM, Fankhauser JD, Wyse DL, Marks MD. A draft genome of field pennycress (Thlaspi arvense) provides tools for the domestication of a new winter biofuel crop. DNA Res. 2015;22:121–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baroja-Fernandez E, Munoz FJ, Li J, Bahaji A, Almagro G, Montero M, Etxeberria E, Hidalgo M, Sesma MT, Pozueta-Romero J. Sucrose synthase activity in the sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production. P Natl Acad Sci USA. 2012;109:321–6.
Article
CAS
Google Scholar
Noel GM, Pontis HG. Involvement of sucrose synthase in sucrose synthesis during mobilization of fructans in dormant Jerusalem artichoke tubers. Plant Sci. 2000;159:191–5.
Article
CAS
PubMed
Google Scholar
Wang W, Liu G, Niu H, Timko MP, Zhang H. The F-box protein COI1 functions upstream of MYB305 to regulate primary carbohydrate metabolism in tobacco (Nicotiana Tabacum L. cv. TN90). J Exp Bot. 2014;65:2147–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu G, Ren G, Guirgis A, Thornburg RW. The MYB305 transcription factor regulates expression of nectarin genes in the ornamental tobacco floral nectary. Plant Cell. 2009;21:2672–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu G, Thornburg RW. Knockdown of MYB305 disrupts nectary starch metabolism and floral nectar production. Plant J. 2012;70:377–88.
Article
CAS
PubMed
Google Scholar
Wiesen LB, Bender RL, Paradis T, Larson A, Perera MADN, Nikolau BJ, Olszewski NE, Carter CJ. A role for GIBBERELLIN 2-OXIDASE6 and gibberellins in regulating nectar production. Mol Plant. 2016;9:753–75637.
Article
CAS
PubMed
Google Scholar
Roy R, Schmitt AJ, Thomas JB, Carter CJ. Review: Nectar Biology: from molecules to ecosystems. Plant Sci. 2017;262:148–64.
Article
CAS
PubMed
Google Scholar
Smyth DR, Bowman JL, Meyerowitz EM. Early flower development in Arabidopsis. Plant Cell. 1990;2:755–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–U130.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dorn KM, Fankhauser JD, Wyse DL, Marks MD. De novo assembly of the pennycress (Thlaspi arvense) transcriptome provides tools for the development of a winter cover crop and biodiesel feedstock. Plant J. 2013;75:1028–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J Roy Stat Soc B Met. 1995;57:289–300.
Google Scholar
Landis JB, Ventura KL, Soltis DE, Soltis PS, Oppenheimer DG. Optical sectioning and 3D reconstructions as an alternative to scanning electron microscopy for analysis of cell shape. Appl Plant Sci. 2015;3:1400112.
Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD. PANTHER version 11: expanded annotation data from gene ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2017;45:D183–9.
Article
PubMed
Google Scholar