Ward JMJ, Stromberg EL, Nowell DC. Grey leaf spot. A disease of global importance in maize production. Plant Dis. 1999;83:884–95.
Article
Google Scholar
Meisel B, Korsman J, Kloppers F, Berger DK. Cercospora zeina is the causal agent of grey leaf spot disease of maize in southern Africa. Eur J Plant Pathol. 2009;124:577–583.
Wang J, Levy M, Dunkle LD. Sibling species of Cercospora associated with gray leaf spot of maize. Phytopathology. 1998;88:1269–75.
Dunkle LD, Levy M. Genetic relatedness of African and United States populations of Cercospora zeae-maydis. Phytopathology. 2000:486–90.
Gordon SG, Bartsch M, Matthies I, Gevers HO, Lipps PE, Pratt RC. Linkage of molecular markers to Cercospora zeae-maydis resistance in maize. Crop Sci. 2004;44:628–36.
CAS
Google Scholar
Jones JDG, Dangl JL. The plant immune system. Nature. 2006;444:323–9.
Article
CAS
PubMed
Google Scholar
Schmelz EA, Kaplan F, Huffaker A, Dafoe NJ, Vaughan MM, Ni X, et al. Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize. Proc Natl Acad Sci U. S. A. 2011;108:5455–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamane H. Biosynthesis of Phytoalexins and Regulatory Mechanisms of It in Rice. Biosci Biotechnol Biochem. 2013;77:1141–8.
Article
CAS
PubMed
Google Scholar
Van Etten H, Mansfield J, Bailey J, Farmer E. Two Classes of Plant Antibiotics: Phytoalexins versus “Phytoanticipins”. Plant Cell. 1994;6:1191–2.
Article
CAS
Google Scholar
Prisic S, Xu M, Wilderman PR, Peters RJ. Rice contains two disparate ent-Copalyl diphosphate synthases with distinct metabolic functions. Plant Physiol. 2004;136:4228–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M. An overview of gibberellin metabolism enzyme genes and their related mutants in Rice. Plant Physiol. 2004;134:1642–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Otomo K, Kanno Y, Motegi A, Kenmoku H, Yamane H, Mitsuhashi W, et al. Diterpene Cyclases responsible for the biosynthesis of Phytoalexins, Momilactones A, B, and Oryzalexins A – F in Rice. Biosci Biotechnol Biochem 2006;68:2001–6.
Peters RJ. Uncovering the complex metabolic network underlying diterpenoid phytoalexin biosynthesis in rice and other cereal crop plants. Phytochemistry. 2006;67:2307–17.
Article
CAS
PubMed
Google Scholar
Toyomasu T. Recent Advances Regarding Diterpene Cyclase Genes in Higher Plants and Fungi. Biosci Biotechnol Biochem. 2008;72:1168–75.
Article
CAS
PubMed
Google Scholar
Wang Q, Hillwig ML, Wu Y, Peters RJ. CYP701A8: a rice ent-kaurene oxidase paralog diverted to more specialized diterpenoid metabolism. Plant Physiol. 2012;158:1418–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swaminathan S, Morrone D, Wang Q, Fulton DB, Peters RJ. CYP76M7 is an ent-cassadiene C11-α - hydroxylase defining a second multifunctional diterpenoid biosynthetic gene cluster in rice. Plant Cell. 2009;21:3315–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Shao M, Yang J, Zhong W, Okada K, Yamane H, et al. Oscyp71Z2 involves diterpenoid phytoalexin biosynthesis that contributes to bacterial blight resistance in rice. Plant Sci. 2013;207:98–107.
Article
CAS
PubMed
Google Scholar
Harris L, Saparno A, Johnston A, Prisic S, Xu M, Allard S, et al. The maize An2 gene is induced by Fusarium attack and encodes an ent-copalyl diphosphate synthase. Plant Mol Biol. 2005;59:881–94.
Article
CAS
PubMed
Google Scholar
Fu J, Ren F, Lu X, Mao H, Xu M, Degenhardt J, et al. A tandem array of ent-kaurene synthases in maize with roles in gibberellin and more specialized metabolism. Plant Physiol. 2016;170:742–51.
Article
CAS
PubMed
Google Scholar
Zhang P, Foerster H, Tissier CP, Mueller L, Paley S, Karp PD, et al. MetaCyc and AraCyc. Metabolic pathway databases for plant research. Plant Physiol. 2005;138:27–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Christie N, Myburg AA, Joubert F, Murray SL, Carstens M, Lin Y-C, et al. Systems genetics reveals a transcriptional network associated with susceptibility in the maize-grey leaf spot pathosystem. Plant J. 2017;89:746–63.
Article
CAS
PubMed
Google Scholar
Vaughan MM, Christensen S, Schmelz EA, Huffaker A, Mcauslane HJ, Alborn HT, et al. Accumulation of terpenoid phytoalexins in maize roots is associated with drought tolerance. Plant Cell Environ 2015;38:2195–207.
Article
CAS
PubMed
Google Scholar
Allardyce JA, Rookes JE, Hussain HI, Cahill DM. Transcriptional profiling of Zea mays roots reveals roles for jasmonic acid and terpenoids in resistance against Phytophthora cinnamomi. Funct Integr Genomics. 2013;13:217–28.
Article
CAS
PubMed
Google Scholar
Doehlemann G, Wahl R, Horst RJ, Voll LM, Usadel B, Poree F, et al. Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Plant J. 2008;56:181–195.
Huffaker A, Kaplan F, Vaughan MM, Dafoe NJ, Ni X, Rocca JR, et al. Novel acidic Sesquiterpenoids constitute a dominant class of pathogen-induced Phytoalexins in maize. Plant Physiol. 2011;156:2082–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Köllner TG, Schnee C, Li S, Svatos A, Schneider B, Gershenzon J, et al. Protonation of a neutral (S)-β-bisabolene intermediate is involved in (S)-β-macrocarpene formation by the maize sesquiterpene synthases TPS6 and TPS11. J Biol Chem. 2008;283:20779–88.
Article
PubMed
PubMed Central
Google Scholar
Bensen R, Johal G, Crane V, Tossberg J, Schnable P, Meeley R, et al. Cloning and characterization of the maize An1 gene. Plant cell. 1995;7:75–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Basse CW. Dissecting defense-related and developmental transcriptional responses of maize during Ustilago maydis infection and subsequent tumor formation. Plant Physiol. 2005;138:1774–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Der Linde K, Doehlemann G. Virus-Induced Gene Silencing. In: Becker A, editor. Virus-Induced Gene Silenc Methods Protoc. Methods Mol Biol. 2013. p. 47–60.
Munkvold GP, Martinson CA, Shriver JM, Dixon PM. Probabilities for profitable fungicide use against gray leaf spot in hybrid maize. Phytopathology. 2001;91:477–84.
Korsman J, Meisel B, Kloppers FJ, Crampton BG, Berger DK. Quantitative phenotyping of grey leaf spot disease in maize using real-time PCR. Eur J Plant Pathol. 2012;133:461–71.
Article
CAS
Google Scholar
Sekhon RS, Lin H, Childs KL, Hansey CN, Buell CR, De Leon N, et al. Genome-wide atlas of transcription during maize development. Plant J. 2011;66:553–63.
Article
CAS
PubMed
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms. Nat Biotechnol. 2010;28:511–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc. 2012;7:562–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lanubile A, Ferrarini A, Maschietto V, Delledonne M, Marocco A, Bellin D. Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. BMC Genomics. 2014;15:710–26.
Article
PubMed
PubMed Central
Google Scholar
Du Z, Zhou X, Ling Y, Zhang Z, Su Z. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010;38:W64–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dangl JL, Jones JDG. Plant pathogens and integrated defence responses to infection. Nature. 2001;411:826–33.
Article
CAS
PubMed
Google Scholar
Doukhanina EV, Chen S, van der Zalm E, Godzik A, Reed J, Dickman MB. Identification and functional characterization of the BAG protein family in Arabidopsis thaliana. J Biol Chem. 2006;281:18793–801.
Article
CAS
PubMed
Google Scholar
van der Biezen EA, Jones JD. The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol. 1980;8:R226–7.
Article
Google Scholar
Frey M, Kliem R, Saedler H, Gierl A. Expression of a cytochrome P450 gene family in maize. Mol Gen Genet. 1995;246:100–9.
Article
CAS
PubMed
Google Scholar
Shimura K, Okada A, Okada K, Jikumaru Y, Ko KW, Toyomasu T, et al. Identification of a biosynthetic gene cluster in rice for momilactones. J Biol Chem. 2007;282:34013–8.
Article
CAS
PubMed
Google Scholar
Usadel B, Poree F, Nagel A, Lohse M, Czedik-Eysenberg A, Stitt M. A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, Maize. Plant Cell Environ. 2009;32:1211–29.
Article
PubMed
Google Scholar
Klie S, Nikoloski Z. The Choice between MapMan and Gene Ontology for Automated Gene Function Prediction in Plant Science. Front Genet. 2012;3:1–14.
Article
Google Scholar
Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, et al. Mapman: a User-Driven Tool To Display Genomics Data Sets Onto Diagrams of Metabolic Pathways and Other Biological Processes. Plant J. 2004;37:914–39.
Article
CAS
PubMed
Google Scholar
Law PJ, Claudel-renard C, Joubert F, Louw AI, Berger DK. MADIBA. A web server toolkit for biological interpretation of plasmodium and plant gene clusters. BMC Genomics. 2008;9:105.
Article
PubMed
PubMed Central
Google Scholar
Schmelz EA, Huffaker A, Sims JW, Christensen SA, Lu X. Okada K, et al. Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. 2014:659–78.
Kanno Y, Otomo K, Kenmoku H, Mitsuhashi W, Yamane H, Oikawa H, et al. Characterization of a rice gene family encoding type-a diterpene cyclases. Biosci Biotechnol Biochem. 2006;70:1702–10.
Article
CAS
PubMed
Google Scholar
Schmelz EA, Huffaker A, Sims JW, Christensen S, Lu X, Okada K, et al. Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. Plant J. 2014;79:659–78.
Otomo K, Kenmoku H, Oikawa H, König WA, Toshima H, Mitsuhashi W, et al. Biological functions of ent- and syn-copalyl diphosphate synthases in rice: key enzymes for the branch point of gibberellin and phytoalexin biosynthesis. Plant J. 2004;39:886–93.
Article
CAS
PubMed
Google Scholar
Berger DK, Carstens M, Korsman JN, Middleton F, Kloppers FJ, Tongoona P, et al. Mapping QTL conferring resistance in maize to gray leaf spot disease caused by Cercospora zeina. BMC Genet. 2014;15:60–71.
Article
PubMed
PubMed Central
Google Scholar
Meyer J, Murray SL, Berger DK. Signals that stop the rot: regulation of secondary metabolite defences in cereals. Physiol Mol Plant Pathol. 2016;94:156–66.
Ren Y, West CA. Elicitation of Diterpene biosynthesis in Rice (Oryza sativa L.) by chitin. Plant Physiol. 1992;99:1169–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kishimoto K, Kouzai Y, Kaku H, Shibuya N, Minami E, Nishizawa Y. Perception of the chitin oligosaccharides contributes to disease resistance to blast fungus Magnaporthe oryzae in rice. Plant J. 2010;(64):343–54.
Akamatsu A, Wong HL, Fujiwara M, Okuda J, Nishide K, Uno K, et al. An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity. Cell Host Microbe. 2013;13:465–76.
Ntuli JF. Characterisation of Phytoalexin accumulation in maize inoculated with Cercospora zeina, the causal organism of Grey leaf spot disease: University of Cape Town; 2016.
Durrant WE, Dong X. Systemic acquired resistance. Annu Rev Phytopathol. 2004;42:185–209.
Turner JG, Ellis C, Devoto A. The Jasmonate signal pathway. Plant Cell 2002;14 Suppl:S153–S164.
Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol. 2005;43:205–27.
Article
CAS
PubMed
Google Scholar
Vogt T. Phenylpropanoid biosynthesis. Mol Plant. 2010;3:2–20.
Article
CAS
PubMed
Google Scholar
Tohge T, Watanabe M, Hoefgen R, Fernie AR. Shikimate and phenylalanine biosynthesis in the green lineage. Front Plant Sci. 2013;4:1–26.
Article
Google Scholar
Dixon R, Achnine L, Kota P, Liu C, Reddy M, Wang L. The phenylpropanoid pathway and plant defence— a genomics perspective. Mol Plant Pathol. 2002;3:371–90.
Article
CAS
PubMed
Google Scholar
Liu H, Du Y, Chu H, Shih CH, Wong YW, Wang M, et al. Molecular dissection of the pathogen-inducible 3-deoxyanthocyanidin biosynthesis pathway in sorghum. Plant Cell Physiol. 2010;51:1173–85.
Hasegawa M, Mitsuhara I, Seo S, Okada K, Yamane H, Iwai T, et al. Analysis on blast fungus-responsive characters of a flavonoid phytoalexin sakuranetin; accumulation in infected rice leaves, antifungal activity and detoxification by fungus. Molecules. 2014;19:11404–18.
Sekhon RS, Kuldau G, Mansfield M, Chopra S. Characterization of Fusarium-induced expression of flavonoids and PR genes in maize. Physiol Mol Plant Pathol. 2006;69:109–17.
Chen X, Hackett CA, Niks RE, Hedley PE, Booth C, Druka A, et al. An eQTL analysis of partial resistance to Puccinia hordei in barley. PLoS One. 2010;5:e8598.
Article
PubMed
PubMed Central
Google Scholar
Ravensdale M, Rocheleau H, Wang L, Nasmith C, Ouellet T, Subramaniam R. Components of priming-induced resistance to Fusarium head blight in wheat revealed by two distinct mutants of Fusarium graminearum. Mol Plant Pathol. 2014;15:948–56.
Van Eck L, Schultz T, Leach JE, Scofield SR, Peairs FB, Botha AM, et al. Virus-induced gene silencing of WRKY53 and an inducible phenylalanine ammonia-lyase in wheat reduces aphid resistance. Plant Biotechnol J. 2010;8:1023–32.
Article
CAS
PubMed
Google Scholar
Balmer D, Mauch-Mani B. More beneath the surface? Root versus shoot antifungal plant defenses. Front Plant Sci. 2013;4:1–3.
Google Scholar
Atawong A, Hasegawa M, Kodama O. Biosynthesis of rice phytoalexin: enzymatic conversion of 3 β-hydroxy-9 β-pimara-7,15-dien-19,6 β-olide to momilactone A. Biosci Biotechnol Biochem. 2002;66:566–70.
Article
CAS
PubMed
Google Scholar
Kato H, Kodama O, Akatsuka T. Characterization of an inducible P450 hydroxylase involved in the Rice Diterpene Phytoalexin biosynthetic pathway. Arch Biochem Biophys. 1995;316:707–12.
Article
CAS
PubMed
Google Scholar
Mao H, Liu J, Ren F, Peters RJ, Wang Q. Characterization of CYP71Z18 indicates a role in maize zealexin biosynthesis. Phytochemistry. 2015;121:4–10.
Article
PubMed
Google Scholar
Bilgin DD, Zavala JA, Zhu J, Clough SJ, Ort DR, DeLucia EH. Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ. 2010;33:1597–613.
Rojas CM, Senthil-Kumar M, Tzin V, Mysore KS. Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front Plant Sci. 2014;5:1–12.
Ingle RA, Carstens M, Denby KJ. PAMP recognition and the plant-pathogen arms race. BioEssays. 2006;28:880–9.
Yao L-L, Zhou Q, Pei B-L, Li Y-Z. Hydrogen peroxide modulates the dynamic microtubule cytoskeleton during the defence responses to Verticillium dahliae toxins in Arabidopsis. Plant Cell Environ. 2011;34:1586–98.
Schmidt SM, Panstruga R. Cytoskeleton functions in plant–microbe interactions. Physiol Mol Plant Pathol. 2007;71:48–135.
Hardham AR. Microtubules and biotic interactions. Plant J. 2013;75:278–89.
Rodríguez VM, Santiago R, Malvar RA, Butrón A. Inducible maize defense mechanisms against the corn borer Sesamia nonagrioides: a transcriptome and biochemical approach. Mol Plant-Microbe Interact. 2012;25:61–8.
Article
PubMed
Google Scholar
Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ. Shades of gray: the world of quantitative disease resistance. Trends Plant Sci. 2009;14:21–9.
Petti C, Khan M, Doohan F. Lipid transfer proteins and protease inhibitors as key factors in the priming of barley responses to Fusarium head blight disease by a biocontrol strain of Pseudomonas fluorescens. Funct Integr Genomics. 2010;10:619–27.
Salzman RA, Brady JA, Finlayson SA, Buchanan CD, Summer EJ, Sun F, et al. Transcriptional profiling of sorghum induced by methyl Jasmonate, salicylic acid, and Aminocyclopropane carboxylic acid reveals cooperative regulation and novel gene responses. Plant Physiol. 2005;138:352–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jain M, Khurana JP. Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J. 2009;276:3148–62.
Article
CAS
PubMed
Google Scholar
Domingo C, Andrés F, Tharreau D, Iglesias DJ, Talón M. Constitutive expression of OsGH3.1 reduces auxin content and enhances defense response and resistance to a fungal pathogen in Rice. Mol Plant-Microbe Interact. 2009;22:201–10.
Article
CAS
PubMed
Google Scholar
Kazan K, Manners JM. Linking development to defense: auxin in plant-pathogen interactions. Trends Plant Sci. 2009;14:373–82.
Morant AV, Jørgensen K, Jørgensen C, Paquette SM, Sánchez-Pérez R, Møller BL, et al. β-Glucosidases as detonators of plant chemical defense. Phytochemistry. 2008;69:1795–813.
Niemeyer H. Hydroxamic acids (4-Hydroxy-1, 4-Benzoxazin-3-ones), Defence chemicals in the Gramineae. Phytochemistry. 1988;27:3349–58.
Article
CAS
Google Scholar
Dafoe NJ, Thomas JD, Shirk PD, Legaspi ME, Vaughan MM, Huffaker A, et al. European corn borer (Ostrinia nubilalis) induced responses enhance susceptibility in maize. PLoS One. 2013;8:e73394.
Dafoe NJ, Huffaker A, Vaughan MM, Duehl AJ, Teal PE, Schmelz EA. Rapidly induced chemical defenses in maize stems and their effects on short-term growth of Ostrinia nubilalis. J Chem Ecol. 2011;37:984–91.
Article
CAS
PubMed
Google Scholar
Du Fall LA, Solomon PS. The necrotrophic effector SnToxA induces the synthesis of a novel phytoalexin in wheat. New phytol. 2013;200:185–200.
Oikawa A, Ishihara A, Hasegawa M, Kodama O. Induced accumulation of 2-hydroxy-4, 7-dimethoxy-1, 4-benzoxazin-3-one glucoside (HDMBOA-Glc) in maize leaves. Phytochemistry. 2001;56:669–75.
Article
CAS
PubMed
Google Scholar
Ahmad S, Veyrat N, Gordon-Weeks R, Zhang Y, Martin J, Smart L, et al. Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiol. 2011;157:317–27.
Balmer D, Villacres De Papajewski D, Planchamp C, Glauser G, Mauch-Mani B. Induced resistance in maize is based on organ-specific defence responses. Plant J. 2013;74:213–25.
Article
CAS
PubMed
Google Scholar
Lyimo HJF, Pratt RC, Mnyuku RSOW. Infection process in resistant and susceptible maize (Zea mays L.) genotypes to Cercospora zeae-maydis (type II). Plant Prot Sci. 2013;49:11–8.
Google Scholar
Vaughan MM, Huffaker A, Schmelz EA, Dafoe NJ, Christensen SA, McAuslane HJ, et al. Interactive effects of elevated [CO2] and drought on the maize phytochemical defense response against mycotoxigenic Fusarium verticillioides. PLoS One. 2016;11:1–24.
Google Scholar
Vaughan MM, Huffaker A, Schmelz EA, Dafoe NJ, Christensen S, Sims J, et al. Effects of elevated [CO2] on maize defence against mycotoxigenic Fusarium verticillioides. Plant. Cell Environ. 2014;37:2691–706.
Article
CAS
Google Scholar
Okada K. The Biosynthesis of Isoprenoids and the Mechanisms Regulating It in Plants. Biosci Biotechnol Biochem. 2014;75:1219–25.
Vranová E, Coman D, Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol. 2013;64:665–700.
Article
PubMed
Google Scholar
Degenhardt J, Köllner TG, Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry. 2009;70:1621–37.
Messmer R, Fracheboud Y, Bänziger M, Vargas M, Stamp P, Ribaut J-M. Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet. 2009;119:913–30.
Article
PubMed
Google Scholar
Blankenberg D, Gordon A, Von Kuster G, Coraor N, Taylor J, Nekrutenko A. Manipulation of FASTQ data with Galaxy. Bioinformatics. 2010;26:1783–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326:1112–5.
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25:1105–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.
Article
PubMed
PubMed Central
Google Scholar
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–6.
Article
CAS
PubMed
Google Scholar
Marshall OJ. PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinforma Appl Note. 2004;20:2471–2.
Article
CAS
Google Scholar
Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007;35:W71–4.
Article
PubMed
PubMed Central
Google Scholar
Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 2007;8:R19.
Vandesompele J, De Preter K, Poppe B, Van Roy N, De Paepe A. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:1–12.
Article
Google Scholar
Ma J, Morrow DJ, Fernandes J, Walbot V. Comparative profiling of the sense and antisense transcriptome of maize lines. Genome Biol. 2006;7:R22.1–R22.18.
Article
Google Scholar
Schmelz EA, Engelberth J, Tumlinson JH, Block A, Alborn HT. The use of vapor phase extraction in metabolic profiling of phytohormones and other metabolites. Plant J. 2004;39:790–808.
Article
CAS
PubMed
Google Scholar
Schmelz E a, Engelberth J, Alborn HT, O’Donnell P, Sammons M, Toshima H, et al. Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proc Natl Acad Sci U S A. 2003;100:10552–7
Article
CAS
PubMed
PubMed Central
Google Scholar
Frey M, Chomet P, Glawischnig E, Stettner C, Grun S, Winklmair A, et al. Analysis of a Chemical Plant Defense Mechanism in Grasses. Science. 1997;277:696–9.
Article
CAS
PubMed
Google Scholar