Harlan JR. The living fields: our agricultural heritage. Cambridge: Cambridge Univ. Press; 1995.
Google Scholar
Hoffmann W, Mudra A, Plarre W. Lehrbuch der Züchtung landwirtschaftlicher Kulturpflanzen. Berlin: Paul Parey; 1985.
Google Scholar
Sonmez F, Ulker M, Yilmaz N, Ege H, Burun B, Apak R. The relationships among grain yield and some yield components in tir wheat. Turk J Agric For. 1999;23:45–52.
Google Scholar
Sonmez F, Keskin S, Gocmen B. A study on the determination of the reactions of lines of Tir wheat to yellow rust (Puccinia striiformis f.Sp. tritici). Crop Prot. 2002;21(9):871–4.
Article
Google Scholar
Strehlow W, Hertzka G, Weuffen W. Aspetti nutrizionali. Le caratteristiche dietetiche del farro nel trattamento di malattie croniche. In: Perrino P, Semeraro D, Laghetti G, editors. Bari: Convegno “ll farro un cereal della salute”; 1994. p. 52–66.
Google Scholar
Karagoz A. Agronomic practices and socio-economic aspects of emmer and einkorn cultivation in Turkey. In: Padulosi S, Hammer K, Heller J, editors. Proceedings of the first International workshop on hulled wheats. Tuscany: IPGRI; 1995. p. 172–7.
Zaharieva M, Ayana NG, Al Hakimi A, Misra SC, Monneveux P. Cultivated emmer wheat (Triticum diccocum Schrank), an old crop with a promising future: a review. Genet Resour Crop Evol. 2010;57:937–62.
Article
Google Scholar
Konvalina P, Capouchova I, Stehno Z. Genetic resources of emmer wheat and their prospective use in organic farming. Lucrări Ştiinţifice. 2012;55(2):13–8.
Google Scholar
Glaszmann JC, Kilian B, Upadhyaya HD, Varshney RK. Accessing genetic diversity for crop improvement. Curr Opin Plant Biol. 2010;13(2):167–73.
Article
CAS
PubMed
Google Scholar
Kilian B, Ozkan H, Walther A, Kohl J, Dagan T, Salamini F, Martin W. Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (einkorn) domestication: implications for the origin of agriculture. Mol Biol Evol. 2007;24(12):2657–68.
Article
CAS
PubMed
Google Scholar
Gianfranceschi L, Seglias N, Tarchini R, Komjanc M, Gessler C. Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet. 1998;96:1069–76.
Article
CAS
Google Scholar
Karagoz A, Zencirci N. Variation in wheat (Triticum spp.) landraces from different altitudes of three regions of Turkey. Genet Resour Crop Evol. 2005;52:775–85.
Article
Google Scholar
Kaplan M, Akar T, Kamalak A, Bulut S. Use of diploid and tetraploid hulled wheat genotypes for animal feeding. Turk J Agric For. 2014;38(6):838–46.
Article
Google Scholar
Ozkan H, Brandolini A, Schäfer-Pregl R, Martin W. Genetics and geography of wild cereal domestication in the near east. Nat Rev Genet. 2002;3(6):429–41.
PubMed
Google Scholar
Delacy IH, Skowmand B, Huerta J. Characterization of Mexican landraces using agronomically useful attributes. Genet Resour Crop Evol. 2002;47:87–96.
Google Scholar
IBPGR. Descriptors of wheat (revised). Rome: IBPGR Secretariat; 1985.
Google Scholar
Gulsen O, Shearman RC, Vogel KP, Lee DJ, Paenziger PS, Heng-Moss TM, Budak H. Nuclear genome diversity and relationships among naturally occurring buffalograss genotypes determined by sequence-related amplified polymorphism. Hortscience. 2005;40:537–41.
CAS
Google Scholar
Somers DJ, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet. 2004;109:1105–14.
Article
CAS
PubMed
Google Scholar
Xue S, Zhang Z, Lin F, Kong Z, Cao Y, Li C, Yi H, Mei M, Zhu H, Wu J, Xu H, Zhao D, Tian D, Zhang C, Ma Z. A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet. 2008;117:181–9.
Article
CAS
PubMed
Google Scholar
Peleg Z, Fahima T, Abbo S, Krugman T, Saranga Y. Genetic structure of wild emmer wheat populations as reflected by transcribed versus anonymous SSR markers. Genome. 2008;51:187–95.
Article
PubMed
Google Scholar
Wright S. Isolation by distance. Genetics. 1943;28(2):114–38.
CAS
PubMed
PubMed Central
Google Scholar
Tao L, Ren J. A quantitative approach to the study of evolutionary ecology. Beijing: Forestry Press; 2004.
Google Scholar
Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci. 1973;70:3321–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.
Article
CAS
PubMed
Google Scholar
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611–20.
Article
CAS
PubMed
Google Scholar
Earl DA, BM vH. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour. 2012;4(2):359–61.
Article
Google Scholar
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–59.
CAS
PubMed
PubMed Central
Google Scholar
Sharma V, Bhardwaj P, Kumar R, Sharma RK, Sood A, Ahuja PS. Identification and cross-species amplification of EST derived SSR markers in different bamboo species. Conserv Genet. 2009;10:721–4.
Article
CAS
Google Scholar
Nei M. Genetic distance between populations. Amer Naturalist. 1972;106:283–92.
Article
Google Scholar
Canevara MG, Romani M, Corbellini M, Perenzin M, Borghi B. Evolutionary trends in morphological, physiological, agronomical and qualitative traits of Triticum Aestivum L. cultivars bred in Italy since 1900. Eur J Agron. 1994;3:175–85.
Article
Google Scholar
Akar T, Ozgen M. Genetic diversity in Turkish durum wheat landraces. In: Buck HT, Nisi JE, Salomón N, editors. Wheat production in stressed environments. Dordrecht: Springer; 2007.
Google Scholar
Newton AC, Akar T, Baresel JP, Bebeli PJ, Bettencourt E, Bladenopoulos KV, Czembor JH, Fasoula DA, Katsiotis A, Koutis K, Koitsuka-Sotiriou M, Kovacs G, Larsson H, de Carvalho MAA P, Rubiales D, Russell J, TMM DS, Vaz Patto MC. Cereal landraces for sustainable agriculture. A review. Agron Sustain Dev. 2010;30(2):237–69.
Article
Google Scholar
Galili G, Galili S, Lewinsohn E, Tadmor Y. Genetic, molecular, and genomic approaches to improve the value of plant foods and feeds. CRC Crit Rev Plant Sci. 2002;21(3):167–204.
Article
CAS
Google Scholar
Distelfield A, Uauy C, Fahima T, Dubcovsky J. Physical map of the wheat high-protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol. 2006;169:753–63.
Article
Google Scholar
Botstein D, White RL, Skolnick M, Davis RV. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980;32:314–31.
CAS
PubMed
PubMed Central
Google Scholar
Salunkhe A, Tamhankar S, Tetali S, Zaharieva M, Bonnett D, Trethowan R, Misra S. Molecular genetic diversity analysis in emmer wheat (Triticum dicoccon Schrank) from India. Genet Resour Crop Evol. 2013;60:165–74.
Article
CAS
Google Scholar
Teklu Y, Hammer K, Huang XQ. Röder MS analysis of microsatellite diversity in Ethiopian tetraploid wheat landraces. Genet Resour Crop Evol. 2006;53:1115–26.
Article
CAS
Google Scholar
Pagnotta M, Mondini L, Atallah M. Morphological and molecular characterization of Italian emmer wheat accessions. Euphytica. 2005;146:29–37.
Article
Google Scholar
Brbaklić L, Trkulja D, Kondić-Špika A, Hristov N, Denčić S, Mikić S, Tomičić M, Kobiljski B. Genetic associations in the detection of QTLs for wheat spike-related traits. Pesq Agropec Bras. 2015;50(2):149–59.
Article
Google Scholar
Fahima T, Röder MS, Wendehake K, Kirzhner VM, Nevo E. Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides, in Israel. Theor Appl Genet. 2002;104:17–29.
Article
CAS
PubMed
Google Scholar
Bertin P, Gregoire D, Massart S, de Froidmont D. Genetic diversity among European cultivated spelt revealed by microsatellites. Theor Appl Genet. 2001;102:148–56.
Article
CAS
Google Scholar
Huang XQ, Börner A, Röder MS, Ganal MW. Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet. 2002;105:699–707.
Article
CAS
PubMed
Google Scholar
Roussel V, Leisova L, Exbrayat F, Stehno Z, Balfourier F. SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000. Theor Appl Genet. 2005;11:162–70.
Article
Google Scholar
Khlestkina EK, Röder MS, Efremova TT, Börner A, Shumny VK. The genetic diversity of old and modern Siberian varieties of common spring wheat determined by microsatellite markers. Plant Breed. 2004;123:122–7.
Article
CAS
Google Scholar
Liu J, Williams JR, Zehnder AJB, Yang H. GEPIC - modelling wheat yield and crop water productivity with high resolution on a global scale. Agric Syst. 2007;94(2):478–93.
Article
Google Scholar
Herrera TG, Duque DP, Almeida IP, Nunez GT, Pieters AJ, Martinez CP, Tohme JM. Assesment on genetic diversity in Venezuelan rice cultivars using simple sequence repeats markers. Electron J Biotechnol. 2008;11(5):215–26.
Google Scholar
Yao QL, Chen FB, Fang P, Zhou GF, Fan YH, Zhang ZR. Genetic diversity of Chinese vegetable mustard (Brassica juncea Coss) landraces based on SSR data. Biochem Syst Ecol. 2012;45:41–8.
Article
CAS
Google Scholar
Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 2005;38:203–8.
Article
PubMed
Google Scholar
Teixeira H, Rodríguez-Echeverría S, Nabais C. Correction: genetic diversity and differentiation of Juniperus thurifera in Spain and Morocco as determined by SSR. PLoS One. 2015;10(5):e0126042.
Article
PubMed
PubMed Central
Google Scholar
Ozkan H, Brandolini A, Pozzi C, Effgen S, Wunder J, Salamini F. A reconsideration of the domestication geography of tetraploid wheats. Theor Appl Genet. 2005;110:1052–60.
Article
CAS
PubMed
Google Scholar