Martynov SP, Dobrovotvorskaya TV, Morgounov AI, Urazaliev RA, Absattarova AS. Genealogical analysis of diversity of spring bread wheat cultivars released in Kazakhstan from 1929–2004. Acta Agronomica Hungary. 2005;53:261–72.
Article
Google Scholar
Morgounov A, Gomez-Becerra HG, Abugalieva A, Dzhunusova M, Yessimbekova M, Miminjanov H, Zelenskiy Y, Ozturk L, Cakmak I. Iron and zinc grain density in common wheat grown in Central Asia. Euphytica. 2007;155:193–203.
Article
Google Scholar
Gomez-Becerra HF, Abugalieva A, Morgounov A, Abdullaev K, Bekenova L, Yessimbekova M, Sereda G, Shpigun S, Tsygankov V, Zelenskiy Y, Pena RH, Cakmak I. Phenotypic correlations, G Ј E interactions and broad sense heritability analysis of grain and flour quality characteristics in high latitude spring bread wheats from Kazakhstan and Siberia. Euphytica. 2010;171:23–38.
Article
CAS
Google Scholar
Turuspekov Y, Plieske J, Ganal M, Akhunov E, Abugalieva S. Phylogenetic analysis of wheat cultivars in Kazakhstan based on the wheat 90 K single nucleotide polymorphism array. Plant Genetic Resources. 2015; doi:10.1017/S1479262115000325.
Olmstead A, Rhode P. The red queen and the hard reds: productivity growth in American wheat, 1800–1940. J Econ Hist. 2002;62(4):929–66.
Article
Google Scholar
Turuspekov Y, Sariev B, Chudinov V, Sereda G, Tokhetova L, Ortaev A, Tsygankov V, Doszhanov M, Volis S, Abugalieva S. Genotype x environment interaction patterns for grain yield of spring barley in different regions of Kazakhstan. Russian Journal Genetics. 2013;49(2):224–34.
Article
CAS
Google Scholar
Bruinsma J. “The resource outlook to 2050: by how much do land, water, and crop yields need to increase by 2050?” in proceedings of the FAO expert meeting on ‘how to feed the world in 2050, FAO, Rome, Italy, June 2009. P.1-32.
Pérez-de-Castro AM, Vilanova S, Cañizares J, et al. Application of genomic tools in plant breeding. Current Genomics. 2012;13(3):179–95.
Article
PubMed
PubMed Central
Google Scholar
Cericola F, Jahoor A, Orabi J, Andersen JR, Janss LL, Jensen J. Optimizing training population size and genotyping strategy for genomic prediction using association study results and pedigree information. A case of study in advanced wheat breeding lines. PLoS One. 2017;12(1):e0169606.
Article
PubMed
PubMed Central
Google Scholar
Lopes MS, Dreisigacker S, Peña RJ, Sukumaran S, Reynolds MP. Genetic characterization of the wheat association mapping initiative (WAMI) panel for dissection of complex traits in spring wheat. Theor Appl Genet. 2015;128:453–64.
Article
CAS
PubMed
Google Scholar
Cui F, Zhang N, Fan X, Zhang W, Zhao CH, Yang LJ, Pan RQ, Chen M, Han J, Zhao XQ, Ji J, Tong YP, Zhang HX, Jia JZ, Zhao GY, Li JM. Utilization of a wheat 660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep. 2017;7(1):3788.
Article
PubMed
PubMed Central
Google Scholar
Allen AM, Winfield MO, Burridge AJ, Downie RC, Benbow HR, Barker GL, Wilkinson PA, Coghill J, Waterfall C, Davassi A, Scopes G, Pirani A, Webster T, Brew F, Bloor C, Griffiths S, Bentley AR, Alda M, Jack P, Phillips AL, Edwards KJ. Characterization of a wheat Breeders' Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum). Plant Biotechnol J. 2017;15(3):390–401.
Article
CAS
PubMed
Google Scholar
Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat Genome Sequencing Consortium, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J. 2014;12:787–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Myles S, Peiffer J, Brown P, Ersoz E, Zhang Z, Costich D, Buckler E. Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell. 2009;21(8):2194–202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zegeye H, Rasheed A, Makdis F, Badebo A, Ogbonnaya FC. Genome-wide association mapping for seedling and adult plant resistance to stripe rust in synthetic Hexaploid wheat. PLoS One. 2014;9(8):e105593.
Article
PubMed
PubMed Central
Google Scholar
Sukumaran S, Dreisigacker S, Lopes M, Chavez P, Reynolds MP. Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. TheorAppl Genet. 2015;128:353–63.
Article
CAS
Google Scholar
Gurung S, Mamidi S, Bonman JM, Xiong M, Brown-Guedira G, Adhikari TB. Genome-wide association study reveals novel quantitative trait loci associated with resistance to multiple leaf spot diseases of spring wheat. PLoS One. 2014;9(9):e108179.
Article
PubMed
PubMed Central
Google Scholar
Zanke C, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Beier S, Ganal MW, Röder MS. Genetic architecture of main effect QTL for heading date in European winter wheat. Front Plant Sci. 2014;(5):217. doi:10.3389/fpls.2014.00217.
Mengistu DK, Kidane YG, Catellani M, Frascaroli E, Fadda C, Pè ME, Dell’Acqua M. High-density molecular characterization and association mapping in Ethiopian durum wheat landraces reveals high diversity and potential for wheat breeding. Plant Biotechnol J. 2016;14:1800–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oyiga BC, Sharma RC, Baum M, Ogbonnaya FC, Léon J, Ballvora A. Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat. Plant, cell and environment. 2017;doi:10.1111/pce.12898.
Valluru R, Reynolds MP, Davies WJ, Sukumaran S. Phenotypic and genome-wide association analysis of spike ethylene in diverse wheat genotypes under heat stress. New Phytol. 2017;214:271–83.
Article
CAS
PubMed
Google Scholar
Jighly A, Alagu M, Makdis F, Singh M, Singh S, Emebiri LC, OgbonnayaFC. Genomic regions conferring resistance to multiple fungal pathogens in synthetic hexaploid wheat. Mol Breeding. 2016;36:127.
Article
Google Scholar
Naruoka Y,·Garland-Campbell KA, Carter AH. Genome-wide association mapping for stripe rust (Puccinia striiformis F. Sp. tritici) in US Pacific northwest winter wheat (Triticum Aestivum L.). TheorAppl Genet.2015;128:1083–1101.
Article
CAS
Google Scholar
Guo Z, Chen D, Alqudah AM, MS. Rӧder3, Ganal MW, Schnurbusch T. Genome-wide association analyses of 54 traits identified multiple loci for the determination of floret fertility in wheat. New Phytol. 2017;214:257–70.
Article
CAS
PubMed
Google Scholar
Arora S, Singh N, Kaur S, Bains NS, Uauy C, Poland J, Chhuneja P. Genome-Wide Association Study of Grain Architecture in Wild Wheat Aegilops tauschii. Front. Plant Sci. 2017;doi:10.3389/fpls.2017.00886.
Lin M, Zhang D, LiuSh ZG, Yu J, Fritz AK, Bai G. Genome-wide association analysis on pre-harvest sprouting resistance and grain color in U.S. winter wheat. BMC Genomics. 2016;17:794.
Article
PubMed
PubMed Central
Google Scholar
Jaiswal V., Gahlaut V., Meher P.K., Mir R.R., Jaiswal J.P., Rao A.R., Balyan H.S., Gupta P.K. Genome Wide Single Locus Single Trait, Multi-Locus and Multi-Trait Association Mapping for Some Important Agronomic Traits in Common Wheat (T. aestivum L.) PLoS ONE. 2016. DOI:10.1371/journal.pone.0159343
Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragues R, Royo A, Dodig D. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet. 2005;110:865–80.
Article
CAS
PubMed
Google Scholar
Reynolds MP, Trethowan R, Crossa J, Vargas M, Sayre KD. Physiological factors associated with genotype by environmentinteraction in wheat. Field Crops Res. 2002;75:139–60.
Article
Google Scholar
Gonzales-Navarro O, Griffiths S, Molero G, Reynolds M, Slafer G. Variation in developmental patterns among elite wheat lines and relationship with yield, yield components and spike fertility. Field Crops Res. 2016;196:294–304.
Article
Google Scholar
GraphPad Software, Inc. http://www.graphpad.com/faq/viewfaq.cfm?faq=1362. Accessed 7 July 2017.
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–5.
Article
CAS
PubMed
Google Scholar
International Wheat Genome Sequencing Consortium (IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345(6194):1251788.
Article
Google Scholar
Wilkinson PA, Winfield MO, Barker GLA, Allen AM, Burridge A, Coghill JA, Burridge A, Edwards KJ. Cereals DB 2.0: an integrated resource for plant breeders and scientists. BMC Bioinformatics. 2012;13:219.
Article
PubMed
PubMed Central
Google Scholar
Somers DJ, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet. 2004;109:1105–14.
Article
CAS
PubMed
Google Scholar
Korzun VM, Röder SM, Ganal WA, Worland JC, Law N. Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet. 1998;96:1104–9.
Article
CAS
Google Scholar
Turner MK, Kolmer JA, Pumphrey MO, Bulli P, Chao S, Anderson JA. Association mapping of leaf rust resistance loci in a spring wheat core collection. Theor Appl Genet. 2016;doi 10.1007/s00122-016-2815-y.