Alboresi A, Gestin C, Leydecker MT, Bedu M, Meyer C, Truong HN. Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell Environ. 2005;28:500–12.
Article
CAS
PubMed
Google Scholar
Alonso-Blanco C, Aarts MGM, Bentsink L, Keurentjes JJB, Reymond M, Vreugdenhil D, Koornneef M. What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell. 2009;21:1877–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bai B, Novák O, Ljung K Hanson J, Bentsink L. Combined transcriptome and translatome analyses reveal a role for transcriptional inhibition of tryptophan dependent auxin biosynthesis in the control of DOG1 dependent seed dormancy. 2017. Unpublished.
Google Scholar
Bassel GW, Glaab E, Marquez J, Holdsworth MJ, Bacardit J. Functional network construction in Arabidopsis using rule-based machine learning on large-scale data sets. Plant Cell. 2011;23:3101–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc B Mec. 1995;57:289–300.
Bentsink L, Hanson J, Hanhart CJ, Blankestijn-de Vries H, Coltrane C, Keizer P, El-Lithy M, Alonso-Blanco C, de Andrés MT, Reymond M, van Eeuwijk F, Smeekens S, Koornneef M. Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular pathways. Proc Natl Acad Sci U S A. 2010;107:4264–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bentsink L, Jowett J, Hanhart CJ, Koornneef M. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci U S A. 2006;103:17042–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bewley JD. Seed germination and dormancy. Plant Cell. 1997;9:1055.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bewley JD, Bradford K, Hilhorst H. Seeds: physiology of development, germination and dormancy. New York: Springer; 2012.
Cadman CS, Toorop PE, Hilhorst HW, Finch-Savage WE. Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J. 2006;46:805–22.
Article
CAS
PubMed
Google Scholar
Carpita NC, Gibeaut DM. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 1993;3:1–30.
Article
CAS
PubMed
Google Scholar
Carrera E, Holman T, Medhurst A, Dietrich D, Footitt S, Theodoulou FL, Holdsworth MJ. Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. Plant J. 2008;53:214–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheung W, Hubert N, Landry B. A simple and rapid DNA microextraction method for plant, animal, and insect suitable for RAPD and other PCR analyses. Genome Res. 1993;3:69–70.
Article
CAS
Google Scholar
Clerkx EJ, Vries BD, Ruys GJ, Groot SP, Koornneef M. Genetic differences in seed longevity of various Arabidopsis mutants. Physiol Plant. 2004;121:448–61.
Article
CAS
Google Scholar
Cosgrove DJ. Enzymes and other agents that enhance cell wall extensibility. Annu Rev Plant Biol. 1999;50:391–417.
Article
CAS
Google Scholar
Dekkers BJW, Pearce SP, van Bolderen-Veldkamp RPM, Holdsworth MJ, Bentsink L. Dormant and after-ripened Arabidopsis thaliana seeds are distinguished by early transcriptional differences in the imbibed state. Front Plant Sci. 2016b;7:1323–38.
Article
PubMed
PubMed Central
Google Scholar
Dekkers BJ, He H, Hanson J, Willems LA, Jamar DC, Cueff G, Rajjou L, Hilhorst HW, Bentsink L. The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development. Plant J. 2016a;85:451–65.
Article
CAS
PubMed
Google Scholar
Devanathan S, Erban A, Perez-Torres R Jr, Kopka J, Makaroff CA. (2014) Arabidopsis thaliana Glyoxalase 2–1 is required during abiotic stress but is not essential under normal plant growth. PLoS One. 2014;9:e95971.
Article
PubMed
PubMed Central
Google Scholar
Finch-Savage WE, Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol. 2006;171:501–23.
Article
CAS
PubMed
Google Scholar
Fu Q, Wang B, Jin X, Li H, Han P, Wei K-H, Zhang X-M, Zhu Y. Proteomic analysis and extensive protein identification from dry, germinating Arabidopsis seeds and young seedlings. J Biochem Mol Biol. 2005;38:650.
CAS
PubMed
Google Scholar
Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D. Proteomic analysis of arabidopsis seed germination and priming. Plant Physiol. 2001;126:835–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gase K, Weinhold A, Bozorov T, Schuck S, Baldwin IT. Efficient screening of transgenic plant lines for ecological research. Mol Ecol Resour. 2011;11:890–902.
Article
PubMed
Google Scholar
Griffiths J, Murase K, Rieu I, Zentella R, Zhang ZL, Powers SJ, Gong F, Phillips AL, Hedden P, Sun TP, Thomas SG. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell. 2006;18:3399–414.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gubler F, Millar AA, Jacobsen JV. Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol. 2005;8:183–7.
Article
CAS
PubMed
Google Scholar
Holdsworth MJ, Bentsink L, Soppe WJJ. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol. 2008a;179:33–54.
Article
CAS
PubMed
Google Scholar
Holdsworth MJ, Finch-Savage WE, Grappin P, Job D. Post-genomics dissection of seed dormancy and germination. Trends Plant Sci. 2008b;13:7–13.
Article
CAS
PubMed
Google Scholar
Howell KA, Narsai R, Carroll A, Ivanova A, Lohse M, Usadel B, Millar AH, Whelan J. Mapping metabolic and transcript temporal switches during germination in rice highlights specific transcription factors and the role of RNA instability in the germination process. Plant Physiol. 2009;149:961–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hua J, Meyerowitz EM. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell. 1998;94:261–71.
Article
CAS
PubMed
Google Scholar
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4:249–64.
Article
PubMed
Google Scholar
Ismail AM, Hall AE, Close TJ. Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. Proc Natl Acad Sci U S A. 1999;96:13566–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iuchi S, Suzuki H, Kim YC, Iuchi A, Kuromori T, Ueguchi-Tanaka M, Asami T, Yamaguchi I, Matsuoka M, Kobayashi M, Nakajima M. Multiple loss-of-function of Arabidopsis gibberellin receptor AtGID1s completely shuts down a gibberellin signal. Plant J. 2007;50:958–66.
Article
CAS
PubMed
Google Scholar
Joosen RV, Arends D, Li Y, Willems LA, Keurentjes JJ, Ligterink W, Jansen RC, Hilhorst HW. Identifying genotype-by-environment interactions in the metabolism of germinating arabidopsis seeds using generalized genetical genomics. Plant Physiol. 2013;162:553–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koornneef M, Van der Veen JH. Induction and analysis of gibberellin-sensitive mutants in Arabidopsis thaliana (L.) Heynh. Theor Appl Genet. 1980;58:257–63.
Article
CAS
PubMed
Google Scholar
Koornneef M, Jorna M, Brinkhorst-Van der Swan D, Karssen C. The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) Heynh. Theor Appl Genet. 1982;61:385–93.
CAS
PubMed
Google Scholar
Koornneef M, Reuling G, Karssen C. The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant. 1984;61:377–83.
Article
CAS
Google Scholar
Le BH, Cheng C, Bui AQ, Wagmaister JA, Henry KF, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S. Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci U S A. 2010;107:8063–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee B-h, Lee H, Xiong L, Zhu J-K. A mitochondrial complex I defect impairs cold-regulated nuclear gene expression. Plant Cell. 2002;14:1235–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu X, Zhang H, Zhao Y, Feng Z, Li Q, Yang H-Q, Luan S, Li J, He Z-H. (2013) Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc Natl Acad Sci U S A. 2013;110:15485–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Koornneef M, Soppe WJ. (2007) The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy. Plant Cell. 2007;19:433–44.
Article
PubMed
PubMed Central
Google Scholar
Matakiadis T, Albores A, Jikumaru Y, Tatematsu K, Pichon O, Renou J-P, Kamiya Y, Nambara E, Truong H-N. The Arabidopsis abscisic acid catabolic gene CYP707A2 plays a key role in nitrate control of seed dormancy. Plant Physiol. 2009;149:949–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E. Genome-wide profiling of stored mRNA in Arabidopsis Thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J. 2005;41:697–709.
Article
CAS
PubMed
Google Scholar
Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol. 2005;56:165–85.
Article
CAS
PubMed
Google Scholar
Nylander M, Svensson J, Palva ET, Welin BV. (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol. 2001;45:263–79.
Article
CAS
PubMed
Google Scholar
O’Malley RC, Ecker JR. Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J. 2010;61:928–40.
Article
PubMed
Google Scholar
Oh E, Kang H, Yamaguchi S, Park J, Lee D, Kamiya Y, Choi G. Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis. Plant Cell. 2009;21:403–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pauly M, Qin Q, Greene H, Albersheim P, Darvill A, York WS. Changes in the structure of xyloglucan during cell elongation. Planta. 2001;212:842–50.
Article
CAS
PubMed
Google Scholar
Penfield S, Josse E-M, Halliday KJ. A role for an alternative splice variant of PIF6 in the control of Arabidopsis primary seed dormancy. Plant Mol Biol. 2010;73:89–95.
Article
CAS
PubMed
Google Scholar
Preston J, Tatematsu K, Kanno Y, Hobo T, Kimura M, Jikumaru Y, Yano R, Kamiya Y, Nambara E. (2009) Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: a comparative study on dormant and non-dormant accessions. Plant Cell Physiol. 2009;50:1786–800.
Article
CAS
PubMed
Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.
Article
PubMed
PubMed Central
Google Scholar
Sánchez M, Gianzo C, Sampedro J, Revilla G, Zarra I. Changes in α-Xylosidase during intact and Auxin-induced growth of pine hypocotyls. Plant Cell Physiol. 2003;44:132–8.
Article
PubMed
Google Scholar
Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol. 2004;3:Article 3.
Sreenivasulu N, Usadel B, Winter A, Radchuk V, Scholz U, Stein N, Weschke W, Strickert M, Close TJ, Stitt M. Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiol. 2008;146:1738–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sugliani M, Brambilla V, Clerkx EJ, Koornneef M, Soppe WJ. The conserved splicing factor SUA controls alternative splicing of the developmental regulator ABI3 in Arabidopsis. Plant Cell. 2010;22:1936–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Team, RC R. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2012. ISBN 3-900051-07-0
Google Scholar
Toh S, Imamura A, Watanabe A, Nakabayashi K, Okamoto M, Jikumaru Y, Hanada A, Aso Y, Ishiyama K, Tamura N. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol. 2008;146:1368–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang YH. How effective is T-DNA insertional mutagenesis in Arabidopsis? J Biochem Technol. 2008;1:11–20.
CAS
Google Scholar
Werner AK, Sparkes IA, Romeis T, Witte C-P. Identification, biochemical characterization, and subcellular localization of allantoate amidohydrolases from Arabidopsis and soybean. Plant Physiol. 2008;46:418–30.
Google Scholar
Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol. 2008;59:225–51.
Article
CAS
PubMed
Google Scholar
Yamaguchi S, Smith MW, Brown RG, Kamiya Y, Sun T-P. Phytochrome regulation and differential expression of gibberellin 3β-hydroxylase genes in germinating Arabidopsis seeds. Plant Cell. 1998;10:2115–26.
CAS
PubMed
PubMed Central
Google Scholar
Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S. Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell. 2004;16:367–78.
Article
CAS
PubMed
PubMed Central
Google Scholar