CGIAR_Research_Program_on_Wheat. Wheat CRP Annual Report 2013: the vital grain of civilization and food security. Mexico: Consultative Group on International Agricultural Research; 2014.
Google Scholar
Ellis JG, Lagudah ES, Spielmeyer W, Dodds PN. The past, present and future of breeding rust resistant wheat. Front Plant Sci. 2014;5:641.
Article
PubMed
PubMed Central
Google Scholar
Bolton MD, Kolmer JA, Garvin DF. Wheat leaf rust caused by Puccinia triticina. Mol Plant Pathol. 2008;9(5):563–75.
Article
PubMed
Google Scholar
Samborski DJ. Wheat leaf rust. In: Roelfs AP, Bushnell WR, editors. The cereal rusts, vol. 2. New York: Academic; 1985. p. 39–59.
Google Scholar
Oliver RP. A reassessment of the risk of rust fungi developing resistance to fungicides. Pest Manag Sci. 2014;70(11):1641–5.
Article
CAS
PubMed
Google Scholar
Herrera-Foessel SA, Huerta-Espino J, Calvo-Salazar V, Lan CX, Singh RP. Lr72 confers resistance to leaf rust in durum wheat cultivar Atil C2000. Plant Dis. 2014;98(5):631–5.
Article
Google Scholar
Park RF, Mohler V, Nazari K, Singh D. Characterisation and mapping of gene Lr73 conferring seedling resistance to Puccinia triticina in common wheat. Theor Appl Genet. 2014;127(9):2041–9.
Article
CAS
PubMed
Google Scholar
Singh D, Mohler V, Park RF. Discovery, characterisation and mapping of wheat leaf rust resistance gene Lr71. Euphytica. 2012;190(1):131–6.
Article
Google Scholar
Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T, Feuillet C, Keller B, Jordan MC. Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol. 2007;65(1–2):93–106.
Article
CAS
PubMed
Google Scholar
Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci U S A. 2003;100(25):15253–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics. 2003;164(2):655–64.
CAS
PubMed
PubMed Central
Google Scholar
Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science. 2009;323(5919):1360–3.
Article
CAS
PubMed
Google Scholar
Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S, et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet. 2015;47(12):1494–8.
Article
CAS
PubMed
Google Scholar
McCartney CA, Somers DJ, McCallum BD, Thomas J, Humphreys DG, Menzies JG, Brown PD. Microsatellite tagging of the leaf rust resistance gene Lr16 on wheat chromosome 2BS. Mol Breed. 2005;15(4):329–37.
Article
CAS
Google Scholar
McCallum BD, Seto-Goh P. Physiological specialization of wheat leaf rust [Puccinia triticina] in Canada in 2000. Can J Plant Pathol. 2003;25:91–7.
Article
Google Scholar
German SE, Kolmer JA. Effect of gene Lr34 in the enhancement of resistance to leaf rust of wheat. Theor Appl Genet. 1992;84(1–2):97–105.
CAS
PubMed
Google Scholar
Hiebert CW, Thomas JB, McCallum BD. Stacking pairs of disease resistance genes in wheat populations using telocentric chromosomes. Mol Breed. 2010;26(4):681–92.
Article
Google Scholar
Kolmer J. Enhanced leaf rust resistance in wheat conditioned by resistance gene pairs with Lr13. Euphytica. 1992;61:123–30.
Article
Google Scholar
Kolmer JA, Liu JQ. Inheritance of leaf rust resistance in the wheat cultivars AC Majestic, AC Splendor, and AC Karma. Can J Plant Pathol. 2002;24:327–31.
Article
Google Scholar
Somers DJ, Isaac P, Edwards K. A high-density microsatellite consensus map for breeding wheat (Triticum aestivum L.). Theor Appl Genet. 2004;109:1105–14.
Article
CAS
PubMed
Google Scholar
Thomas JB, DePauw RM, Knox RE, Czarnecki E, Campbell AB, Nielsen J, McKenzie RIH, Degenhardt KJ, Morrison RJ. AC foremost red spring wheat. Can J Plant Sci. 1997;77(4):657–60.
Article
Google Scholar
Evans LE, Shebeski LH, McGinnis RC, Briggs KG, Zuzens D. Glenlea red spring wheat. Can J Plant Sci. 1972;52:1081–2.
Article
Google Scholar
Townley-Smith TF, Czarnecki EM. AC Domain hard red spring wheat. Can J Plant Sci. 2008;88(2):347–50.
Article
Google Scholar
Hughes GR, Hucl P. Kenyon hard red spring wheat. Can J Plant Sci. 1991;71(4):1165–8.
Article
Google Scholar
McCallum BD, Seto-Goh P, Xue A. Physiologic specialization of Puccinia triticina, the causal agent of wheat leaf rust, in Canada in 2009. Can J Plant Pathol. 2013;35(3):338–45.
Article
Google Scholar
Long DL, Kolmer JA. A North American system of nomenclature for Puccinia recondita f. sp. tritici. Phytopathology. 1989;79(5):525–9.
Article
Google Scholar
You FM, Huo N, Gu YQ, Lazo GR, Dvorak J, Anderson OD. ConservedPrimers 2.0: a high-throughput pipeline for comparative genome referenced intron-flanking PCR primer design and its application in wheat SNP discovery. BMC Bioinf. 2009;10:331.
Article
Google Scholar
Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, et al. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J. 2014;12(6):787–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilkinson PA, Winfield MO, Barker GL, Allen AM, Burridge A, Coghill JA, Edwards KJ. CerealsDB 2.0: an integrated resource for plant breeders and scientists. BMC Bioinf. 2012;13:219.
Article
Google Scholar
National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov (2016). Accessed 12 Aug 2016.
GrainGenes: A Database for Triticeae and Avena. https://wheat.pw.usda.gov/GG3/ (2016). Accessed 12 Aug 2016.
Jordan KW, Wang S, Lun Y, Gardiner LJ, MacLachlan R, Hucl P, Wiebe K, Wong D, Forrest KL, Consortium I, et al. A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biol. 2015;16:48.
Article
PubMed
PubMed Central
Google Scholar
Consortium TIWGS. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345(6194). doi: 10.1126/science.1251788.
Besemer J, Borodovsky M. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res. 2005;33 suppl 2:W451–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li P, Quan X, Jia G, Xiao J, Cloutier S, You FM. RGAugury: A pipeline for genome-wide prediction of resistance gene analogs (RGAs) in plants. BMC Genomics. 2016;17:accepted.
Harrison NR, Fritz AK, Glasscock JI, Ahmed S, Messina DN, Amand PS, Fellers JP. Using RNA sequencing and in silico subtraction to identify resistance gene analog markers for Lr16 in wheat. Plant Genome. 2015;8(2). doi: 10.3835/plantgenome2014.08.0040.
Kassa MT, You FM, Fetch TG, Fobert P, Sharpe A, Pozniak CJ, Menzies JG, Jordan MC, Humphreys G, Zhu T, et al. Genetic mapping of SrCad and SNP marker development for marker-assisted selection of Ug99 stem rust resistance in wheat. Theor Appl Genet. 2016;129(7):1373–82.
Article
CAS
PubMed
Google Scholar
Allen AM, Barker GLA, Berry ST, Coghill JA, Gwilliam R, Kirby S, Robinson P, Brenchley RC, D’Amore R, McKenzie N, et al. Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J. 2011;9(9):1086–99.
Article
CAS
PubMed
Google Scholar
Lorieux M. MapDisto: fast and efficient computation of genetic linkage maps. Mol Breed. 2012;30(2):1231–5.
Article
CAS
Google Scholar
Kosambi DD. The estimation of map distances from recombination values. Ann Eugen. 1944;12(1):172–5.
Article
Google Scholar
Samborski DJ, Dyck PL. Enhancement of resistance to Puccinia recondita by interactions of resistance genes in wheat. Can J Plant Pathol. 1982;4(2):152–6.
Article
Google Scholar
McCallum BD, DePauw RM. A review of wheat cultivars grown in the Canadian prairies. Can J Plant Sci. 2008;88(4):649–77.
Article
Google Scholar