Lee JT. Epigenetic regulation by long noncoding RNAs. Science. 2012;338(6113):1435–9.
Article
CAS
PubMed
Google Scholar
Johnsson P, Lipovich L, Grander D, Morris KV. Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta. 2014;1840(3):1063–71.
Article
CAS
PubMed
Google Scholar
Ponjavic J, Ponting CP, Lunter G. Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res. 2007;17(5):556–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629–41.
Article
CAS
PubMed
Google Scholar
Ulitsky I, Bartel DP. LincRNAs: genomics, evolution, and mechanisms. Cell. 2013;154(1):26–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Du Z, Fei T, Verhaak RG, Su Z, Zhang Y, Brown M, et al. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nature Str Mol Biol. 2013;20(7):908–13.
Article
CAS
Google Scholar
Crea F, Watahiki A, Quagliata L, Xue H, Pikor L, Parolia A, et al. Identification of a long non-coding RNA as a novel biomarker and potential therapeutic target for metastatic prostate cancer. Oncotarget. 2014;5(3):764–74.
Article
PubMed
PubMed Central
Google Scholar
Ounzain S, Micheletti R, Beckmann T, Schroen B, Alexanian M, Pezzuto I, et al. Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs. Eur Heart J. 2015;36(6):353–68.
Article
PubMed
Google Scholar
Wang P, Fu H, Cui J, Chen X. Differential lncRNA-mRNA co-expression network analysis revealing the potential regulatory roles of lncRNAs in myocardial infarction. Mol Med Rep. 2016;13(2):1195–203.
CAS
PubMed
Google Scholar
Guo Q, Cheng Y, Liang T, He Y, Ren C, Sun L, et al. Comprehensive analysis of lncRNA-mRNA co-expression patterns identifies immune-associated lncRNA biomarkers in ovarian cancer malignant progression. Sci Rep. 2015;5:17683.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee JT, Bartolomei MS. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell. 2013;152(6):1308–23.
Article
CAS
PubMed
Google Scholar
Yarmishyn AA, Kurochkin IV. Long noncoding RNAs: a potential novel class of cancer biomarkers. Front Genet. 2015;6:145.
Article
PubMed
PubMed Central
Google Scholar
He C, Hu H, Wilson KD, Wu H, Feng J, Xia S, et al. Systematic characterization of long noncoding RNAs reveals the contrasting coordination of Cis-and trans-molecular regulation in human fetal and adult heart. Circ Cardiovasc Genet. 2016;9(2):110–8.
Article
CAS
PubMed
Google Scholar
Zhang W, Han Z, Guo Q, Liu Y, Zheng Y, Wu F, et al. Identification of maize long non-coding RNAs responsive to drought stress. PLoS One. 2014;9(6):e98958.
Article
PubMed
PubMed Central
Google Scholar
Wang H, Niu QW, Wu HW, Liu J, Ye J, Yu N, et al. Analysis of non-coding transcriptome in rice and maize uncovers roles of conserved lncRNAs associated with agriculture traits. Plant J. 2015;84(2):404–16.
Article
CAS
PubMed
Google Scholar
Di C, Yuan J, Wu Y, Li J, Lin H, Hu L, et al. Characterization of stress-responsive lncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and structural features. Plant J. 2014;80(5):848–61.
Article
CAS
PubMed
Google Scholar
Quan M, Tian J, Yang X, Du Q, Song Y, Wang Q, et al. Association studies reveal the effect of genetic variation in lncRNA UGTRL and its putative target PtoUGT88A1 on wood formation in Populus tomentosa. Tree Genetics Genomes. 2016;12(1):1–16.
Article
Google Scholar
Fan C, Hao Z, Yan J, Li G. Genome-wide identification and functional analysis of lincRNAs acting as miRNA targets or decoys in maize. BMC Genomics. 2015;16(1):1.
Article
Google Scholar
Muthusamy M, Uma S, Backiyarani S, Saraswathi M. Genome-wide screening for novel, drought stress-responsive long non-coding RNAs in drought-stressed leaf transcriptome of drought-tolerant and-susceptible banana (Musa spp) cultivars using Illumina high-throughput sequencing. Plant Biotechnol Rep. 2015;9(5):279–86.
Article
Google Scholar
Megha S, Basu U, Rahman MH, Kav NN. The role of long non-coding RNAs in abiotic stress tolerance in plants. In: Pandey GK, editor, Elucidation of abiotic stress signaling in plants. New York: Springer; 2015. p. 93–106.
Amor BB, Wirth S, Merchan F, Laporte P, d’Aubenton-Carafa Y, Hirsch J, et al. Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res. 2009;19(1):57–69.
Article
PubMed
PubMed Central
Google Scholar
Xin M, Wang Y, Yao Y, Song N, Hu Z, Qin D, et al. Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol. 2011;11(1):61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Jung C, Xu J, Wang H, Deng S, Bernad L, et al. Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell. 2012;24(11):4333–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu W, Yan J, Li J, Sang T. Yield potential of Miscanthus energy crops in the Loess Plateau of China. GCB Bioenergy. 2012;4(5):545–54.
Article
Google Scholar
Sang T. Toward the domestication of lignocellulosic energy crops: Learning from food crop domestication. J Integr Plant Biol. 2011;53(2):96–104.
Article
PubMed
Google Scholar
Liu W, Sang T. Potential productivity of the Miscanthus energy crop in the Loess Plateau of China under climate change. Environ Res Lett. 2013;8(4):044003.
Article
Google Scholar
Sang T, Zhu W. China's bioenergy potential. GCB Bioenergy. 2011;3(2):79–90.
Article
Google Scholar
Yan J, Chen W, Luo F, Ma H, Meng A, Li X, et al. Variability and adaptability of Miscanthus species evaluated for energy crop domestication. GCB Bioenergy. 2012;4(1):49–60.
Article
Google Scholar
Yan J, Zhu C, Liu W, Luo F, Mi J, Ren Y, et al. High photosynthetic rate and water use efficiency of Miscanthus lutarioriparius characterize an energy crop in the semiarid temperate region. GCB Bioenergy. 2015;7(2):207–18.
Article
CAS
Google Scholar
Yan J, Zhu M, Liu W, Xu Q, Zhu C, Li J, et al. Genetic variation and bidirectional gene flow in the riparian plant Miscanthus lutarioriparius, across its endemic range: Implications for adaptive potential. GCB Bioenergy. 2016;8:764–76.
Article
CAS
Google Scholar
Fan Y, Wang Q, Kang L, Liu W, Xu Q, Xing S, et al. Transcriptome-wide characterization of candidate genes for improving the water use efficiency of energy crops grown on semiarid land. J Exp Bot. 2015;66(20):6415–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu Q, Xing S, Zhu C, Liu W, Fan Y, Wang Q, et al. Population transcriptomics reveals a potentially positive role of expression diversity in adaptation. J Integr Plant Biol. 2015;57:284–99.
Article
CAS
PubMed
Google Scholar
Liu W, Mi J, Song Z, Yan J, Li J, Sang T. Long-term water balance and sustainable production of Miscanthus energy crops in the Loess Plateau of China. Biomass and Bioenergy. 2014;62:47–57.
Article
Google Scholar
Mi J, Liu W, Yang W, Yan J, Li J, Sang T. Carbon sequestration by Miscanthus energy crops plantations in a broad range semi-arid marginal land in China. Sci Total Environ. 2014;496:373–80.
Article
CAS
PubMed
Google Scholar
Xing S, Kang L, Xu Q, Fan Y, Liu W, Zhu C, et al. The Coordination of gene expression within photosynthesis pathway for acclimation of C4 energy crop Miscanthus lutarioriparius. Front Plant Sci. 2016;7:109.
PubMed
PubMed Central
Google Scholar
Surget-Groba Y, Montoya-Burgos JI. Optimization of de novo transcriptome assembly from next-generation sequencing data. Genome Res. 2010;20(10):1432–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kong L, Zhang Y, Ye Z-Q, Liu X-Q, Zhao S-Q, Wei L, et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 2007;35 Suppl 2:W345–9.
Article
PubMed
PubMed Central
Google Scholar
Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR. Rfam: an RNA family database. Nucleic Acids Res. 2003;31(1):439–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Petsch K, Shimizu R, Liu S, Xu WW, Ying K, et al. Mendelian and non-mendelian regulation of gene expression in Maize. Plos Genet. 2013;9(1):e1003202.
Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V, Singer MJ, Reed MW. Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: Comparison of endpoint and real-time methods. Anal Biochem. 2000;285(2):194–204.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ΔΔCT method. Methods. 2001;25(4):402–8.
Article
CAS
PubMed
Google Scholar
Shin SY, Shin C. Regulatory non-coding RNAs in plants: potential gene resources for the improvement of agricultural traits. Plant Biotechnol Rep. 2016;10(2):35–47.
Article
Google Scholar
Chikhi R, Medvedev P. Informed and automated k-mer size selection for genome assembly. Bioinformatics. 2014;30(1):31–7.
Article
CAS
PubMed
Google Scholar
Billerey C, Boussaha M, Esquerré D, Rebours E, Djari A, Meersseman C, et al. Identification of large intergenic non-coding RNAs in bovine muscle using next-generation transcriptomic sequencing. BMC Genomics. 2014;15(1):1.
Article
Google Scholar
Pauli A, Valen E, Lin MF, Garber M, Vastenhouw NL, Levin JZ, et al. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res. 2012;22(3):577–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011;25(18):1915–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matkovich SJ, Edwards JR, Grossenheider TC, Strong CD, Dorn GW. Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc Natl Acad Sci U S A. 2014;111(33):12264–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitchell-Olds T, Schmitt J. Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature. 2006;441(7096):947–52.
Article
CAS
PubMed
Google Scholar
Anderson JT, Lee C-R, Rushworth CA, Colautti RI, Mitchell-Olds T. Genetic trade-offs and conditional neutrality contribute to local adaptation. Mol Ecol. 2013;22(3):699–708.
Article
PubMed
Google Scholar
Agren J, Oakley CG, McKay JK, Lovell JT, Schemske DW. Genetic mapping of adaptation reveals fitness tradeoffs in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2013;110(52):21077–82.
Article
PubMed Central
Google Scholar
Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Maruyama K, Mizoi J, et al. Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J. 2015;81(3):505–18.
Article
CAS
PubMed
Google Scholar
Xu Q, Zhu CY, Fan YY, Song ZH, Xing SL, Liu W, et al. Population transcriptomics uncovers the regulation of gene expression variation in adaptation to changing environment. Sci Rep. 2016;6:25536.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen M, Wang CL, Bao H, Chen H, Wang YW. Genome-wide identification and characterization of novel lncRNAs in Populus under nitrogen deficiency. Mol Gen Genomics. 2016;291(4):1663–80.
Article
CAS
Google Scholar
Chang L, Qi H, Xiao Y, Li C, Wang Y, Guo T, et al. Integrated analysis of noncoding RNAs and mRNAs reveals their potential roles in the biological activities of the growth hormone receptor. Growth Hormone IGF Res. 2016;29:11–20.
Article
CAS
Google Scholar
Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol. 2003;6(5):410–7.
Article
CAS
PubMed
Google Scholar
Lyzenga WJ, Stone SL. Abiotic stress tolerance mediated by protein ubiquitination. J Exp Bot. 2012;63(2):599–616.
Article
CAS
PubMed
Google Scholar
Morant M, Bak S, Møller BL, Werck-Reichhart D. Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotechnol. 2003;14(2):151–62.
Article
CAS
PubMed
Google Scholar
Halder SK, Anumanthan G, Maddula R, Mann J, Chytil A, Gonzalez AL, et al. Oncogenic function of a novel WD-Domain protein, STRAP, in human carcinogenesis. Cancer Res. 2006;66(12):6156–66.
Article
CAS
PubMed
Google Scholar
Chen R-H, Miettinen PJ, Maruoka EM, Choy L, Derynck R. A WD-domain protein that is associated with and phosphorylated by the type. Nature. 1995;377(6549):548–52.
Article
CAS
PubMed
Google Scholar
Ford CE, Skiba NP, Bae H, Daaka Y, Reuveny E, Shekter LR, et al. Molecular basis for interactions of G Protein βγ subunits with effectors. Science. 1998;280(5367):1271–4.
Article
CAS
PubMed
Google Scholar
Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, et al. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics. 2014;30(12):1660–6.
Article
CAS
PubMed
Google Scholar
Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome Res. 1999;9(9):868–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet. 2000;16(6):276–7.
Article
CAS
PubMed
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
PubMed
PubMed Central
Google Scholar
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7(3):562–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25.
Article
PubMed
PubMed Central
Google Scholar
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parker BL, Thaysen-Andersen M, Fazakerley DJ, Holliday M, Packer NH, James DE. Terminal galactosylation and sialylation switching on membrane glycoproteins upon TNF-Alpha-Induced insulin resistance in Adipocytes. Mol Cell Proteomics. 2016;15(1):141–53.
Article
CAS
PubMed
Google Scholar
Lee ST, Xiao YY, Muench MO, Xiao JQ, Fomin ME, Wiencke JK, et al. A global DNA methylation and gene expression analysis of early human B-cell development reveals a demethylation signature and transcription factor network. Nucleic Acids Res. 2012;40(22):11339–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27(3):431–2.
Article
CAS
PubMed
Google Scholar