Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta. 2003;218:1–14.
Article
CAS
PubMed
Google Scholar
Tardif G, Kane NA, Adam H, Labrie L, Major G, Gulick P, Sarhan F, Laliberté JF. Interaction network of proteins associated with abiotic stress response and development in wheat. Plant Mol Biol. 2007;63:703–18.
Article
CAS
PubMed
Google Scholar
The International Wheat Genome Sequencing Consortium (IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014. doi:10.1126/science.1251788.
Google Scholar
Wilkinson S, Davies WJ. Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ. 2010;33:510–25.
Article
CAS
PubMed
Google Scholar
Lee SC, Luan S. ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ. 2012;35:53–60.
Article
CAS
PubMed
Google Scholar
Hossain Z, Nouri MZ, Komatsu S. Plant cell organelle proteomics in response to abiotic stress. J Proteome Res. 2012;11:37–48.
Article
CAS
PubMed
Google Scholar
Chaves MM, Maroco JP, Pereira JS. Understanding plant responses to drought from genes to the whole plant. Funct Plant Biol. 2003;30:239–74.
Article
CAS
Google Scholar
Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys. 2005;444:139–58.
Article
CAS
PubMed
Google Scholar
Bhushan D, Pandey A, Choudhary MK, Datta A, Chakraborty S, Chakraborty N. Comparative proteomics analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress. Mol Cell Proteomics. 2007;6:1868–84.
Article
CAS
PubMed
Google Scholar
Reddy AR, Chaitanya KV, Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol. 2004;161:1189–202.
Article
CAS
Google Scholar
Zang X, Komatsu S. A proteomic approach for identifying osmotic-stress-related proteins in rice. Phytochemistry. 2007;68:426–37.
Article
CAS
PubMed
Google Scholar
Cui SX, Hu J, Yang B, Shi L, Huang F, Tsai SN, et al. Proteomic characterization of Phragmites communis in ecotypes of swamp and desert dune. Proteomics. 2009;9:3950–67.
Article
CAS
PubMed
Google Scholar
Ramanjulu S, Bartels D. Drought- and desiccation-induced modulation of gene expression in plants. Plant Cell Environ. 2002;25:141–51.
Article
CAS
PubMed
Google Scholar
Bartels D, Sunkar R. Drought and salt tolerance in plants. Crit Rev Plant Sci. 2005;24:23–58.
Article
CAS
Google Scholar
Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, et al. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell. 2006;18:1292–309.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol. 2009;149:88–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, et al. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J. 2011;9:230–49.
Article
CAS
PubMed
Google Scholar
Xue GP, Way HM, Richardson T, Drenth J, Joyce PA, McIntyre CL. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol Plant. 2011;4:697–712.
Article
CAS
PubMed
Google Scholar
Rahaie M, Xue GP, Naghavi MR, Alizadeh H, Schenk PM. A MYB gene from wheat (Triticum aestivum L.) is up-regulated during salt and drought stresses and differentially regulated between salt-tolerant and sensitive genotypes. Plant Cell Rep. 2010;29:835–44.
Article
CAS
PubMed
Google Scholar
Pandey A, Chakraborty S, Datta A, Chakraborty N. Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.). Mol Cell Proteomics. 2008;7:88–107.
Article
CAS
PubMed
Google Scholar
Choudhary MK, Basu D, Datta A, Chakraborty N, Chakraborty S. Dehydration-responsive nuclear proteome of rice (Oryza sativa L.) illustrates protein network, novel regulators of cellular adaptation, and evolutionary perspective. Mol Cell Proteomics. 2009;8:1579–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Timperio AM, Egidi G, Zolla L. Proteomics applied on plant abiotic stresses: Role of heat shock proteins (HSP). J Proteomics. 2008;71:391–411.
Article
CAS
PubMed
Google Scholar
Rorat T. Plant dehydrins - tissue location, structure and function. Cell Mol Biol Lett. 2006;11:536–56.
Article
CAS
PubMed
Google Scholar
Lopez CG, Banowetz GM, Peterson CJ, Kronstad WE. Dehydrin expression and drought tolerance in seven wheat cultivars. Crop Sci. 2003;43:577–82.
Article
CAS
Google Scholar
Rampino P, Pataleo S, Gerardi C, Mita G, Perrotta C. Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ. 2006;29:2143–52.
Article
CAS
PubMed
Google Scholar
Muñoz-Mayor A, Pineda B, Garcia-Abellán JO, Antón T, Garcia-Sogo B, Sanchez-Bel P, et al. Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato. J Plant Physiol. 2012;169:459–68.
Article
PubMed
CAS
Google Scholar
Imamura T, Higuchi A, Takahashi H. Dehydrins are highly expressed in overwintering buds and enhance drought and freezing tolerance in Gentiana triflora. Plant Sci. 2013;213:55–66.
Article
CAS
PubMed
Google Scholar
Vaseva II, Anders I, Feller U. Identification and expression of different dehydrin subclasses involved in the drought response of Trifolium repens. J Plant Physiol. 2014;171:213–24.
Article
CAS
PubMed
Google Scholar
Mohammadi M, Kav NN, Deyholos MK. Transcript expression profile of water-limited roots of hexaploid wheat (Triticum aestivum ‘Opata’). Genome. 2008;51:357–67.
Article
CAS
PubMed
Google Scholar
Aprile A, Mastrangelo AM, De Leonardis AM, Galiba G, Roncaglia E, Ferrari F, et al. Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome. BMC Genomics. 2009;10:279.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ergen NZ, Budak H. Sequencing over 13000 expressed sequence tags from six subtractive cDNA libraries of wild and modern wheats following slow drought stress. Plant Cell Environ. 2009;32:220–36.
Article
CAS
PubMed
Google Scholar
Wang J, Ding B, Guo Y, Li M, Chen S, Huang G, et al. Overexpression of a wheat phospholipase D gene, TaPLDα, enhances tolerance to drought and osmotic stress in Arabidopsis thaliana. Planta. 2014;240:103–15.
Article
CAS
PubMed
Google Scholar
Manaa A, Ben Ahmed H, Valot B, Bouchet JP, Aschi-Smiti S, Causse M, et al. Salt and genotype impact on plant physiology and root proteome variations in tomato. J Exp Bot. 2011;62:2797–813.
Article
CAS
PubMed
Google Scholar
Mohammadi M, Kav NN, Deyholos MK. Transcriptional profiling of hexaploid wheat (Triticum aestivum L.) roots identifies novel, dehydration-responsive genes. Plant Cell Environ. 2007;30:630–45.
Article
CAS
PubMed
Google Scholar
Ergen NZ, Thimmapuram J, Bohnert HJ, Budak H. Transcriptome pathways unique to dehydration tolerant relatives of modern wheat. Funct Integr Genomics. 2009;9:377–96.
Article
CAS
PubMed
Google Scholar
Sečenji M, Lendvai Á, Miskolczi P, Kocsy G, Gallé Á, Szucs A, et al. Differences in root functions during long-term drought adaptation: comparison of active gene sets of two wheat genotypes. Plant Biol (Stuttg). 2010;12:871–82.
Article
CAS
Google Scholar
Aprile A, Havlickova L, Panna R, Marè C, Borrelli GM, Marone D, et al. Different stress responsive strategies to drought and heat in two durum wheat cultivars with contrasting water use efficiency. BMC Genomics. 2013;14:821.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fleury D, Jefferies S, Kuchel H, Langridge P. Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot. 2010;61:3211–22.
Article
CAS
PubMed
Google Scholar
Pradet-Balade B, Boulme F, Beug H, Muliner EW, Garcia-Sanz JA. Translation control: bridging the gap between genomics and proteomics? Trends Biochem Sci. 2001;26:225–9.
Article
CAS
PubMed
Google Scholar
Agrawal L, Chakraborty S, Jaiswal DK, Gupta S, Datta A, Chakraborty N. Comparative proteomics of tuber induction, development and maturation reveal the complexity of tuberization process in potato (Solanum tuberosum L.). J Proteome Res. 2008;7:3803–17.
Article
CAS
PubMed
Google Scholar
Ford KL, Cassin A, Bacic A. Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance. Front Plant Sci. 2011;2:1–11.
Article
Google Scholar
Bazargani MM, Sarhadi E, Bushehri AA, Matros A, Mock HP, Naghavi MR, et al. A proteomics view on the role of drought-induced senescence and oxidative stress defense in enhanced stem reserves remobilization in wheat. J Proteomics. 2011;74:1959–73.
Article
CAS
PubMed
Google Scholar
Ge P, Ma C, Wang S, Gao L, Li X, Guo G, et al. Comparative proteomic analysis of grain development in two spring wheat varieties under drought stress. Anal Bioanal Chem. 2012;402:1297–313.
Article
CAS
PubMed
Google Scholar
Hao P, Zhu J, Gu A, Lv D, Ge P, Chen G, et al. An integrative proteome analysis of different seedling organs in tolerant and sensitive wheat cultivars under drought stress and recovery. Proteomics. 2014. doi:10.1002/pmic.201400179.
Google Scholar
Faghani E, Gharechahi J, Komatsu S, Mirzaei M, Khavarinejad RA, Najafi F, et al. Comparative physiology and proteomic analysis of two wheat genotypes contrasting in drought tolerance. J Proteomics. 2015;114:1–15.
Article
CAS
PubMed
Google Scholar
Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water stress studies. Plant Soil. 1973;39:205–7.
Article
CAS
Google Scholar
Hodges DM, DeLong JM, Forney CF, Prange RK. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 1999;207:604–11.
Article
CAS
Google Scholar
Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN. Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics. 2006;5:484–96.
Article
CAS
PubMed
Google Scholar
Veljovic-Jovanovic S, Noctor G, Foyer CH. Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol Biochem. 2002;40:501–7.
Article
CAS
Google Scholar
Beyer WF, Fridovich I. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem. 1987;161:559–66.
Article
CAS
PubMed
Google Scholar
Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–6.
Article
CAS
PubMed
Google Scholar
Donnelly BE, Madden RD, Ayoubi P, Porter DR, Dillwith JW. The wheat (Triticum aestivum L.) leaf proteome. Proteomics. 2005;5:1624–33.
Article
CAS
PubMed
Google Scholar
Chaves MM, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot. 2009;103:551–60.
Article
CAS
PubMed
Google Scholar
Kosová K, Vítámvás P, Prásil IT, Renaut J. Plant proteome changes under abiotic stress -- contribution of proteomics studies to understanding plant stress response. J Proteomics. 2011;74:1301–22.
Article
PubMed
CAS
Google Scholar
Danshina PV, Schmalhausen EV, Avetisyan AV, Muronetz VI. Mildly oxidized glyceraldehydes-3-phosphate dehydrogenase as a possible regulator of glycolysis. IUBMB Life. 2001;51:309–14.
Article
CAS
PubMed
Google Scholar
Bedhomme M, Adamo M, Marchand CH, Couturier J, Rouhier N, Lemaire SD, et al. Glutathionylation of cytosolic glyceraldehyde-3-phosphate dehydrogenase from the model plant Arabidopsis thaliana is reversed by both glutaredoxins and thioredoxins in vitro. Biochem J. 2012;445:337–47.
Article
CAS
PubMed
Google Scholar
Rochat T, Boudebbouze S, Gratadoux JJ, Blugeon S, Gaudu P, Langella P, et al. Proteomic analysis of spontaneous mutants of Lactococcus lactis: Involvement of GAPDH and arginine deiminase pathway in H2O2 resistance. Proteomics. 2012;12:1792–805.
Article
CAS
PubMed
Google Scholar
Wierenga RK, Kapetaniou EG, Venkatesan R. Triosephosphate isomerise: a highly evolved biocatalyst. Cell Mol Life Sci. 2010;67:3961–82.
Article
CAS
PubMed
Google Scholar
Riccardi F, Gazeau P, de Vienne D, Zivy M. Protein changes in response to progressive water deficit in maize: quantitative variation and polypeptide identification. Plant Physiol. 1998;117:1253–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J. Proteomics analysis of rice leaves during drought stress and recovery. Proteomics. 2002;2:1131–45.
Article
CAS
PubMed
Google Scholar
Umeda M, Hara C, Matsubayashi Y, Li HH, Liu Q, Tadokoro F, et al. Expressed sequence tags from cultured cells of rice (Oryza sativa L.) under stressed conditions: analysis of transcripts of genes engaged in ATP-generating pathways. Plant Mol Biol. 1994;25:469–78.
Article
CAS
PubMed
Google Scholar
Fei G, Zhou Y, Huang L, He D, Zhang G. Proteomic analysis of long-term salinity stress-responsive proteins in Thellungiella halophila leaves. Chinese Sci Bull. 2008;53:3530–7.
Google Scholar
Pandey S, Rai R, Rai LC. Proteomics combines morphological, physiological and biochemical attributes to unravel the survival strategy of Anabaena sp. PCC7120 under arsenic stress. J Proteomics. 2012;75:921–37.
Article
CAS
PubMed
Google Scholar
Brugiere N, Dubois F, Limami AM, Lelandais M, Roux Y, Sangwan RS, et al. Glutamine synthetase in the phloem plays a major role in controlling proline production. Plant Cell. 1999;11:1995–2012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gadaleta A, Nigro D, Giancaspro A, Blanco A. The glutamine synthetase (GS2) genes in relation to grain protein content of durum wheat. Funct Integr Genomics. 2011;11:665–70.
Article
CAS
PubMed
Google Scholar
Díaz P, Betti M, Sánchez DH, Udvardi MK, Monza J, Márquez AJ. Deficiency in plastidic glutamine synthetase alters proline metabolism and transcriptomic response in Lotus japonicus under drought stress. New Phytol. 2010;188:1001–13.
Article
PubMed
CAS
Google Scholar
Roje S. S-Adenosyl-L-methionine: beyond the universal methyl group donor. Phytochemistry. 2006;67:1686–98.
Article
CAS
PubMed
Google Scholar
Roeder S, Dreschler K, Wirtz M, Cristescu SM, van Harren FJ, Hell R, et al. SAM levels, gene expression of SAM synthetase, methionine synthase and ACC oxidase, and ethylene emission from N. suaveolens flowers. Plant Mol Biol. 2009;70:535–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mayne MB, Coleman JR, Blumwald E. Differential expression during drought conditioning of a root-specific S-adenosylmethionine synthetase from jack pine (Pinus banksiana Lamb.) seedlings. Plant Cell Environ. 1996;19:958–66.
Article
CAS
Google Scholar
Quiroga M, Guerrero C, Botella MA, Ros Barceló A, Amaya I, Medina MI, et al. A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol. 2000;122:1119–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sánchez-Aguayo I, Rodríguez-Galán JM, García R, Torreblanca J, Pardo JM. Salt stress enhances xylem development and expression of S-adenosyl-l-methionine synthase in lignifying tissues of tomato plants. Planta. 2004;220:278–85.
Article
PubMed
CAS
Google Scholar
Yan XL, Liao H, Trull MC, Beebe SE, Lynch JP. Induction of a major leaf acid phosphatase does not confer adaptation to low phosphorus availability in common bean. Plant Physiol. 2001;125:1901–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yun SJ, Kaeppler SM. Induction of maize acid phosphatase activities under phosphorus starvation. Plant Soil. 2001;237:109–15.
Article
CAS
Google Scholar
Tian J, Liao H, Wang X, Cao A, Yan XL. Phosphorus starvation-induced expression of leaf acid phosphatase isoforms in soybean. Acta Bot Sin. 2003;45:1037–42.
CAS
Google Scholar
Tsuji H, Meguro N, Suzuki Y, Tsutsumi N, Hirai A, Nakazono M. Induction of mitochondrial aldehyde dehydrogenase by submergence facilitates oxidation of acetaldehyde during re-aeration in rice. FEBS Lett. 2003;546:369–73.
Article
CAS
PubMed
Google Scholar
Marchitti SA, Brocker C, Stagos D, Vasiliou V. Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol. 2008;4:697–720.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sunkar R, Bartels D, Kirch HH. Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant J. 2003;35:452–64.
Article
CAS
PubMed
Google Scholar
Shiraishi T, Fukusaki E, Kobayashi A. Formate dehydrogenase in rice plant: growth stimulation effect of formate in rice plant. J Biosci Bioeng. 2000;89:241–6.
Article
CAS
PubMed
Google Scholar
Alekseeva AA, Savin SS, Tishkov VI. NAD(+)-dependent formate dehydrogenase from plants. Acta Nat. 2011;3:38–54.
CAS
Google Scholar
Bykova NV, Stensballe A, Egsgaard H, Jensen ON, Moller IM. Phosphorylation of formate dehydrogenase in potato tuber mitochondria. J Biol Chem. 2003;278:26021–30.
Article
CAS
PubMed
Google Scholar
Lehner I, Niehof M, Borlak J. An optimized method for the isolation and identification of membrane proteins. Electrophoresis. 2003;24:1795–808.
Article
CAS
PubMed
Google Scholar
Heide H, Kalisz HM, Follmann H. The oxygen evolving enhancer protein 1 (OEE) of photosystem II in green algae exhibits thioredoxin activity. J Plant Physiol. 2004;161:139–49.
Article
CAS
PubMed
Google Scholar
Marin-Navarro J, Moreno J. Modification of the proteolytic fragmentation pattern upon oxidation of cysteines from ribulose-1,5-bisphosphate carboxylase/oxygenase. Biochemistry. 2003;42:14930–8.
Article
CAS
PubMed
Google Scholar
Flexas J, Ribas-Carbò M, Bota J, Galmés J, Henkle M, Martínez-Canellas S, et al. Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol. 2006;172:73–82.
Article
CAS
PubMed
Google Scholar
Galmés J, Aranjuelo I, Medrano H, Flexas J. Variation in Rubisco content and activity under variable climatic factors. Photosynth Res. 2013;117:73–90.
Article
PubMed
CAS
Google Scholar
Nakahara K, Yamamoto H, Miyake C, Yokota A. Purification and characterization of class-I and class-II fructose-1,6-bisphosphate aldolase from the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol. 2003;44:326–33.
Article
CAS
PubMed
Google Scholar
Patron NJ, Rogers MB, Keeling PJ. Gene replacement of fructose-1,6-bisphosphate aldolase supports the hypothesis of a single photosynthetic ancestor of chromalveolates. Eukaryot Cell. 2004;3:1169–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamazaki S, Nomata J, Fujita Y. Differential operation of dual protochlorophyllide reductases for chlorophyll biosynthesis in response to environmental oxygen levels in the cyanobacterium Leptolyngbya boryana. Plant Physiol. 2006;142:911–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakuraba Y, Rahman L, Cho SH, Kim YS, Koh HJ, Yoo SC, et al. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J. 2013;74:122–33.
Article
CAS
PubMed
Google Scholar
Reinbothe S, Reinbothe C. The regulation of enzymes involved in chlorophyll biosynthesis. Eur J Biochem. 1996;237:323–43.
Article
CAS
PubMed
Google Scholar
Shepherd M, Reid JD, Hunter CN. Purification and kinetic characterization of the magnesium protoporphyrin IX methyltransferase from Synechocystis PCC6803. Biochem J. 2003;371:351–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang GQ, Wang Z, Shang HH, Yang WL, Hu ZA, Phillips J, et al. Proteome analysis of leaves from the resurrection plant Boea hygrometrica in response to dehydration and rehydration. Planta. 2007;225:1405–20.
Article
CAS
PubMed
Google Scholar
Frova C. The plant glutathione transferase gene family: genomic structure, functions, expression and evolution. Physiol Plantarum. 2003;119:469–79.
Article
CAS
Google Scholar
Frova C. Glutathione transferases in the genomics era: New insights and perspectives. Biomol Eng. 2006;23:149–69.
Article
CAS
PubMed
Google Scholar
Margis R, Dunand C, Teixeira FK, Margis-Pinheiro M. Glutathione peroxidase family: an evolutionary overview. J FEBS. 2008;275:3959–70.
Article
CAS
Google Scholar
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48:909–30.
Article
CAS
PubMed
Google Scholar
Suzuki N, Koussevitzky S, Mittler R, Miller G. ROS and redox signaling in the response of plants to abiotic stress. Plant Cell Environ. 2011;35:259–70.
Article
PubMed
CAS
Google Scholar
Raven EL, Lad L, Sharp KH, Mewies M, Moody PC. Defining substrate specificity and catalytic mechanism in ascorbate peroxidase. Biochem Soc Symp. 2004;71:27–38.
Article
CAS
PubMed
Google Scholar
Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, et al. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell. 2005;17:268–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morgan MJ, Lehmann M, Schwarzländer M, Baxter CJ, Sienkiewicz-Porzucek A, Williams TC, et al. Decrease in manganese superoxide dismutase leads to reduced root growth and affects tricarboxylic acid cycle flux and mitochondrial redox homeostasis. Plant Physiol. 2008;147:101–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miriyala S, Spasojevic I, Tovmasyan A, Salvemini D, Vujaskovic Z, St Clair D, et al. Manganese superoxide dismutase, MnSOD and its mimics. Biochim Biophys Acta. 1822;2012:794–814.
Google Scholar
Franklin CC, Backos DS, Mohar I, White CC, Forman HJ, Kavanagh TJ. Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Mol Aspects Med. 2009;30:86–98.
Article
CAS
PubMed
Google Scholar
Lu SC. Regulation of glutathione synthesis. Mol Aspects Med. 2009;30:42–59.
Article
CAS
PubMed
Google Scholar
Ganapathi S, Chidambaram P, Natarajan S, Vengoji R, Karuppannan V. Combined expression of chitinase and β-1,3-glucanase genes in indica rice (Oryza sativa L.) enhances resistance against Rhizoctonia solani. Plant Sci. 2008;175:283–90.
Article
CAS
Google Scholar
Meirinho S, Carvalho M, Dominguez Á, Choupina A. Isolation and characterization by asymmetric PCR of the ENDO1 gene for glucan endo-1,3-β-D-glucosidase in Phytophthora cinnamomi associated with the ink disease of Castanea sativa Mill. Braz Ach Bol Technol. 2010;53:513–8.
Article
CAS
Google Scholar
Chen AP, Wang GL, Qu ZL, Lu CX, Liu N, Wang F, et al. Ectopic expression of ThCYP1, a stress-resposive cyclophilin gene from Thellungiella halophila, confers salt tolerance in fission yeast and tobacco cells. Plant Cell Rep. 2007;26:237–45.
Article
CAS
PubMed
Google Scholar
Gan PH, Shan W, Blackman LM, Hardham AR. Characterization of cyclophilin-encoding genes in phytophthora. Mol Genet Genomics. 2009;281:565–78.
Article
CAS
PubMed
Google Scholar
Weng XY, Huang YY, Gao H, Sun JY. Characterization of a xylanase inhibitor TAXI-I from wheat. Biol Plantarum. 2010;54:154–8.
Article
CAS
Google Scholar
Moscetti I, Tundo S, Janni M, Sella L, Gazzetti K, Tauzin A, et al. Constitutive expression of the xylanase inhibitor TAXI-III delays Fusarium head blight symptoms in durum wheat transgenic plants. Mol Plant Microbe Interact. 2013;26:1464–72.
Article
CAS
PubMed
Google Scholar
Hemant RK, Anil KS, Sudhir KS, Sneh LSP, Ashwani P. Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L.) Heynh and Oryza sativa L. reveals their developmental and stress regulation. BMC Genomics. 2009;10:200.
Article
CAS
Google Scholar
Singh AK, Kumar R, Pareek A, Sopory SK, Singla-Pareek SL. Overexpression of rice CBS domain containing protein improves salinity, oxidative, and heavy metal tolerance in transgenic tobacco. Mol Biotechnol. 2012;52:205–16.
Article
CAS
PubMed
Google Scholar
Youssef A, Laizet Y, Block MA, Marechal E, Alcaraz JP, Larson TR, et al. Plant lipid-associated fibrillin proteins condition jasmonate production under photosynthetic stress. Plant J. 2009;61:436–45.
Article
PubMed
CAS
Google Scholar
Recklies AD, White C, Ling H. The chitinase 3-like protein human cartilage glycoprotein 39 (HC-gp39) stimulates proliferation of human connective-tissue cells and activates both extracellular signal-regulated kinase- and protein kinase B-mediated signalling pathways. Biochem J. 2002;365:119–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu JJ, Sturrock R, Ekramoddoullah AK. The superfamily of thaumatin-like proteins: its origin, evolution, and expression towards biological function. Plant Cell Rep. 2010;29:419–36.
Article
CAS
PubMed
Google Scholar
Leyva JA, Bianchet MA, Amzel LM. Understanding ATP synthesis: structure and mechanism of the F1-ATPase (Review). Mol Membr Biol. 2003;20:27–33.
Article
CAS
PubMed
Google Scholar
Itoh H, Takahashi A, Adachi K, Noji H, Yasuda R, Yoshida M, et al. Mechanically driven ATP synthesis by F1-ATPase. Nature. 2004;427:465–8.
Article
CAS
PubMed
Google Scholar
Christie AH, Allen GG, Gregory JT. Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminum in an aluminum-resistant cultivar of wheat. Plant Physiol. 2001;125:2068–77.
Article
Google Scholar
Zhang XX, Takano T, Liu SK. Identification of a mitochondrial ATP synthase small subunit gene (RMtATP6) expressed in response to salts and osmotic stresses in rice (Oryza sativa L.). J Exp Bot. 2006;57:193–200.
Article
CAS
PubMed
Google Scholar
Zhang XX, Liu SK, Takano T. Overexpression of a mitochondrial ATP synthase small subunit gene (AtMtATP6) confers tolerance to several abiotic stresses in Saccharomyces cerevisiae and Arabidopsis thaliana. Biotechnol Lett. 2008;30:1289–94.
Article
PubMed
CAS
Google Scholar
Dzeja PP, Terzic A. Adenylate kinase and AMP signaling networks: metabolic monitoring, signal communication and body energy sensing. Int J Mol Sci. 2009;10:1729–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh BN, Mishra RN, Agarwal PK, Goswami M, Nair S, Sopory SK, et al. A pea chloroplast translation elongation factor that is regulated by abiotic factors. Biochem Biophys Res Commun. 2004;320:523–30.
Article
CAS
PubMed
Google Scholar
Wan XY, Liu JY. Comparative proteomics analysis reveals an intimate protein network provoked by hydrogen peroxide stress in rice seedling leaves. Mol Cell Proteomics. 2008;7:1469–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ristic Z, Momcilović I, Fu J, Callegari E, DeRidder BP. Chloroplast protein synthesis elongation factor, EF-Tu, reduces thermal aggregation of rubisco activase. J Plant Physiol. 2007;164:1564–71.
Article
CAS
PubMed
Google Scholar
Margus T, Remm M, Tenson T. A computational study of elongation factor G (EFG) duplicated genes: diverged nature underlying the innovation on the same structural template. PLoS One. 2011;6:e22789.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma H, Song L, Shu Y, Wang S, Niu J, Wang Z, et al. Comparative proteomic analysis of seedling leaves of different salt tolerant soybean genotypes. J Proteomics. 2012;75:1529–46.
Article
CAS
PubMed
Google Scholar
Rodnina M, Wintermeyer W. The ribosome as a molecular machine: the mechanism of tRNA-mRNA movement in translocation. Biochem Soc Trans. 2011;39:658–62.
Article
CAS
PubMed
Google Scholar
Xu M, Wang Y, Chen L, Pan B, Chen F, Fang Y, et al. Down-regulation of ribosomal protein S15A mRNA with a short hairpin RNA inhibits human hepatic cancer cell growth in vitro. Gene. 2014;536:84–9.
Article
CAS
PubMed
Google Scholar
Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, McCarthy I, del Río LA. Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol Bioch. 2002;40:521–30.
Article
CAS
Google Scholar
Chamieh H, Marty V, Guetta D, Perollier A, Franzetti B. Stress regulation of the PAN-proteasome system in the extreme halophilic archaeon Halobacterium. Extremophiles. 2012;16:215–25.
Article
CAS
PubMed
Google Scholar
Pang QY, Chen SX, Dai SJ, Chen YZ, Wang Y, Yan XF. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J Proteome Res. 2010;9:2584–99.
Article
CAS
PubMed
Google Scholar
Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heatshock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 2004;9:244–52.
Article
CAS
PubMed
Google Scholar
Feng JT, Liu YK, Song HY, Dai Z, Qin LX, Almofti MR, et al. Heat-shock protein 27: a potential biomarker for hepatocellular carcinoma identified by serum proteome analysis. Proteomics. 2005;5:4581–8.
Article
CAS
PubMed
Google Scholar
Jiang Y, Yang B, Harris NS, Deyholos MK. Comparative proteomics analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot. 2007;58:3591–607.
Article
CAS
PubMed
Google Scholar
Cheng LX, Zhang X, Zhao QX, Li HJ, Wang YP, Wang DX, et al. Comparative proteomic analysis of cold-induced sweetening in potato (Solanum tuberosum L.) tuber. Acta Physiol Plant. 2014;36:1197–210.
Article
CAS
Google Scholar
Cuéllar J, Perales-Calvo J, Muga A, Valpuesta JM, Moro F. Structural insights into the chaperone activity of the 40-kDa heat shock protein DnaJ: binding and remodeling of a native substrate. J Biol Chem. 2013;288:15065–74.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maruyama T, Furuani M. Archael Peptidyl-Prolyl cis/trans Isomerases (PPIases). Front Biosci. 2000;5:821–36.
Google Scholar
Pemberton TJ. Identification and comparative analysis of sixteen fungal peptidyl-prolyl cis/trans isomerase repertoires. BMC Genomics. 2006;7:244.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hoogenboom BW, Suda K, Engel A, Fotiadis D. The supramolecular assemblies of voltage-dependent anion channels in the native membrane. J Mol Biol. 2007;370:246–55.
Article
CAS
PubMed
Google Scholar
De Pinto V, Messina A, Lane DJR, Lawen A. Voltage-dependent anion-selective channel (VDAC) in the plasma membrane. FEBS Lett. 2010;584:1793–9.
Article
PubMed
CAS
Google Scholar
Wang L, He XL, Zhao YJ, Shen YZ, Huang ZJ. Wheat vacuolar H+-ATPase subunit B cloning and its involvementin salt tolerance. Planta. 2011;234:1–7.
Article
CAS
PubMed
Google Scholar
Agarwal P, Reddy MK, Sopory SK, Agarwal PK. Plant rabs: characterization, functional diversity, and role in stress tolerance. Plant Mol Biol Rep. 2009;27:417–30.
Article
CAS
Google Scholar
Pollard TD. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct. 2007;36:451–77.
Article
CAS
PubMed
Google Scholar
Pollard TD, Cooper JA. Actin, a central player in cell shape and movement. Science. 2009;326:1208–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakamura K, Zuppini A, Arnaudeau S, Lynch J, Ahsan I, Krause R, et al. Functional specialization of calreticulin domains. J Cell Biol. 2001;154:961–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen MH, Tain GW, Gafni Y, Citovsky V. Effects of calreticulin on viral cell-to-cell movement. Plant Physiol. 2005;138:1866–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jia XY, Xu CY, Jing RL, Jing RL, Li RZ, Mao XG, et al. Molecular cloning and characterization of wheat calreticulin (CRT) gene involved in drought-stressed responses. J Exp Bot. 2008;59:739–51.
Article
CAS
PubMed
Google Scholar
Komatsu S, Yamada E, Furukawa K. Cold stress changes the concanavalin A - positive glycosylation pattern of proteins expressed in the basal parts of rice leaf sheaths. Amino Acids. 2009;36:115–23.
Article
CAS
PubMed
Google Scholar
Pan YX, Wang XF, Liu HW, Zhang GY, Ma ZY. Molecular cloning of three UDP-glucuronate decarboxylase genes that are preferentially expressed in Gossypium fibers from elongation to secondary cell wall synthesis. J Plant Biol. 2010;53:367–73.
Article
CAS
Google Scholar
Yan J, Wang J, Zhang H. An ankyrin repeat-containing protein plays a role in both disease resistance and antioxidation metabolism. Plant J. 2002;29:193–202.
Article
CAS
PubMed
Google Scholar
Wolpert TJ, Navarre DA, Moore DL, Macko V. Identification of the 100-kD victorin binding protein from oats. Plant Cell. 1994;6:1145–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang L, Lai Z, Ma W, Zhang Y, Xue Y. AhSL28, a senescence- and phosphate starvation-induced S-like RNase gene in Antirrhinum. Biochim Biophys Acta. 2002;1579:64–71.
Article
CAS
PubMed
Google Scholar
Hugot K, Ponchet M, Marais A, Ricci P, Galiana E. A tobacco S-like RNase inhibits hyphal elongation of plant pathogens. Mol Plant Microbe Interact. 2002;15:243–50.
Article
CAS
PubMed
Google Scholar
Zheng J, Wang YY, He YN, Zhou JJ, Li YP, Liu QQ, et al. Overexpression of an S-like ribonuclease gene, OsRNS4, confers enhanced tolerance to high salinity and hyposensitivity to phytochrome-mediated light signals in rice. Plant Sci. 2014;214:99–105.
Article
CAS
PubMed
Google Scholar
Zhou GA, Chang RZ, Qiu LJ. Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis. Plant Mol Biol. 2010;72:357–67.
Article
CAS
PubMed
Google Scholar
Patridge EV, Ferry JG. WrbA from Escherichia coli and Archaeoglobus fulgidus is an NAD(P)H: quinone oxidoreductase. J Bacteriol. 2005;188:3498–506.
Article
CAS
Google Scholar