Misra BB, Assmann SM, Chen S. Plant single-cell and single-cell-type metabolomics. Trends Plant Sci. 2014;19:637–46.
Article
CAS
PubMed
Google Scholar
Wagner GJ, Wang E, Shepherd RW. New approaches for studying and exploiting an old protuberance, the plant trichome. Ann Bot. 2004;93:3–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dai X, Wang G, Yang DS, Tang Y, Broun P, Marks MD, Sumner LW, Dixon RA, Zhao PX. TrichOME: A comparative omics database for plant trichomes. Plant Physiol. 2010;152:44–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lüttge U. Structure and function of plant glands. Annu Rev Plant Physiol. 1971;22:23–44.
Article
Google Scholar
Schilmiller AL, Last RL, Pichersky E. Harnessing plant trichome biochemistry for the production of useful compounds. Plant J. 2008;54:702–11.
Article
CAS
PubMed
Google Scholar
Amarasinghe V, Watson L. Comparative ultrastructure of microhairs in grasses. Bot J Linn Soc. 1988;98:303–19.
Article
Google Scholar
Karimi SH, Ungar IA. Development of epidermal salt hairs in atriplex triangularis willd. In: response to salinity, light intensity, and aeration. Bot Gaz. 1989;150:68–71.
Article
Google Scholar
Adams P, Nelson DE, Yamada S, Chmara W, Jensen RG, Bohnert HJ, Griffiths H. Growth and development of Mesembryanthemum crystallinum (aizoaceae). New Phyt. 1998;138:171–90.
Article
CAS
Google Scholar
Barkla BJ, Vera-Estrella R, Pantoja O. Protein profiling of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum. Proteomics. 2012;12:2862–5.
Article
CAS
PubMed
Google Scholar
Lüttge U, Fischer E, Steudle E. Membrane potentials and salt distribution in epidermal bladders and photosynthetic tissue of Mesembryanthemum crystallinum L. Plant Cell Environ. 1978;1:121–9.
Article
Google Scholar
Barkla BJ, Vera-Estrella R, Camacho-Emiterio J, Pantoja O. Na+/H+ exchange in the halophyte Mesembryanthemum crystallinum is associated with cellular sites of Na+ storage. Funct Plant Biol. 2002;29:1017–24.
Article
CAS
Google Scholar
Agarie S, Shimoda T, Shimizu Y, Baumann K, Sunagawa H, Kondo A, Ueno O, Nakahara T, Nose A, Cushman JC. Salt tolerance, salt accumulation, and ion homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J Exp Bot. 2007;58:1957–67.
Article
CAS
PubMed
Google Scholar
Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci U S A. 2000;97:9390–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics. 2005;4:1265–72.
Article
CAS
PubMed
Google Scholar
Zhang Y, Wen Z, Washburn MP, Florens L. Refinements to label free proteome quantitation: how to deal with peptides shared by multiple proteins. Anal Chem. 2010;82:2272–81.
Article
CAS
PubMed
Google Scholar
Liu H, Sadygov RG, Yates 3rd JR. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem. 2004;76:4193–201.
Article
CAS
PubMed
Google Scholar
Zhang B, VerBerkmoes NC, Langston MA, Uberbacher E, Hettich RL, Samatova NF. Detecting differential and correlated protein expression in label-free shotgun proteomics. J Proteome Res. 2006;5:2909–18.
Article
CAS
PubMed
Google Scholar
Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG. Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Prot. 2005;4:1487–502.
Article
CAS
Google Scholar
The Gene Ontology Consortium Gene ontology annotations and resources. Nucl Acids Res. 2013;41:D530-35
Lawson T. Guard cell photosynthesis and stomatal function. New Phytol. 2009;181:13–34.
Article
CAS
PubMed
Google Scholar
Cui H, Zhang S-T, Yang H-J, Ji H, Wang X-J. Gene expression profile analysis of tobacco leaf trichomes. BMC Plant Biol. 2011;11:76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jou Y, Wang Y-L, Yen HE. Vacuolar acidity, protein profile, and crystal composition of epidermal bladder cells of the halophyte Mesembryanthemum crystallinum. Funct Plant Biol. 2007;34:353–9.
Article
CAS
Google Scholar
Murchie EH, Lawson T. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot. 2013;64:3983–98.
Article
CAS
PubMed
Google Scholar
Oh D-H, Barkla BJ, Vera-Estrella R, Pantoja O, Lee SY, Bohnert HJ, Dassanayake M. Cell type-specific responses to salinity- the epidermal bladder cell transcriptome of Mesembryanthemum crystallinum. New Phyt. 2015;207:627–44.
Article
CAS
Google Scholar
Lüttge U. CO2-concentrating: consequences in crassulacean acid metabolism. J Exp Bot. 2002;53:2131–42.
Article
PubMed
Google Scholar
Cheffings CM, Pantoja O, Ashcroft FM, Smith JA. Malate transport and vacuolar ion channels in CAM plants. J Exp Bot. 1997;48:623–31.
Article
CAS
PubMed
Google Scholar
Miszalski Z, Kornas A, Rozpakek P, Fischer-Schliebs E, Lüttge U. Independent fluctuations of malate and citrate in the CAM species Clusia hilariana Schltdl. under low light and high light in relation to photoprotection. J Plant Physiol. 2013;170:453–8.
Article
CAS
PubMed
Google Scholar
Barkla BJ, Vera-Estrella R. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum. Front Plant Sci. 2015;6:435.
Article
PubMed
PubMed Central
Google Scholar
Fang Y, Robinson DP, Foster LJ. Quantitative analysis of proteome coverage and recovery rates for upstream fractionation methods in proteomics. J Proteome Res. 2010;9:1902–12.
Article
CAS
PubMed
Google Scholar
Piersma SR, Fiedler U, Span S, Lingnau A, Pham TV, Hoffmann S, Kubbutat MHG, Jiménez CR. Workflow comparison for label-free, quantitative secretome proteomics for cancer biomarker discovery: method evaluation, differential analysis, and verification in serum. J Proteome Res. 2010;9:1913–22.
Article
CAS
PubMed
Google Scholar
Munns R, Gilliham M. Salinity tolerance of crops- what is the cost? New Phytol. 2015;208:668–73.
Article
CAS
PubMed
Google Scholar
Consentino C, Di Silvestre D, Fischer-Schliebs E, Homann U, De Palma A, Comunian C, Mauri PL, Thiel G. Proteomic analysis of Mesembryanthemum crystallinum leaf microsomal fractions finds an imbalance in V-ATPase stoichiometry during the salt-induced transition from C3 to CAM. Biochem J. 2013;450:407–15.
Article
Google Scholar
Etalo DW, De Vos RC, Joosten MH, Hall RD. Spatially resolved plant metabolomics: some potentials and limitations of laser-ablation electrospray ionization mass spectrometry metabolite imaging. Plant Physiol. 2015;169:1424–35.
CAS
PubMed
PubMed Central
Google Scholar
Krebs M, Beyhl D, Görlich E, Al-Rasheid KAS, Marten I, Stierhof Y-D, Hedrich R, Schumacher K. Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Proc Natl Acad Sci U S A. 2012;107:3251–6.
Article
Google Scholar
Hamaji K, Nagira M, Yoshida K, Ohnishi M, Oda Y, Uemura T, Goh T, Sato MH, Morita MT.; Tasaka M, Hasezawa S, Nakano A, Hara-Nishimura I, Maeshima M, Fukaki H, Mimura T. Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis. Plant Cell Physiol. 2009;50:2023–33.
Article
CAS
PubMed
Google Scholar
Garcia dela Gamma J, Fernandez-Garcia N, Bardisi E, Pallol B, Asensio-Rubio JS, Bru R, Olmos E. New insights into plant salt acclimation: the roles of vesicle trafficking and reactive oxygen species signalling in mitochondria and the endomembrane system. New Phytol. 2015;205:216–39.
Article
Google Scholar
Martin C, Bhatt K, Baumann K. Shaping in plant cells. Curr Opin Plant Biol. 2001;4:540–9.
Article
CAS
PubMed
Google Scholar
Schumacher K, Vafeados D, McCarthy M, Sze H, Wilkins T, Chory J. The Arabidopsis det3 mutant reveals a central role for the vacuolar H+-ATPase in plant growth and development. Genes Dev. 1999;13:3259–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flowers TJ, Munns R, Colmer TD. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot. 2015;115:419–31.
Article
PubMed
PubMed Central
Google Scholar
Shabala S. Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot. 2013;112:1209–21.
Article
PubMed
PubMed Central
Google Scholar
Teakle NL, Tyerman SD. Mechanisms of Cl− transport contributing to salt tolerance. Plant Cell Environ. 2010;33:566–89.
Article
CAS
PubMed
Google Scholar
von der Fecht-Bartenbach J, Bogner M, Dynowski M, Ludewig U. CLC-b-mediated NO−3/H+ exchange across the tonoplast of Arabidopsis vacuoles. Plant Cell Physiol. 2010;51:960–8.
Article
PubMed
Google Scholar
Keen CL, Lönnerdal B, Hurley LS. Manganese. In: Frieden E, editor. Biochemistry of the Essential Ultratrace Elements. New York: Plenum Press; 1984. p. 89–132.
Chapter
Google Scholar
Broadley M, Brown P, Cakmak I, Rengel Z, Zao F. Function of nutrients: micronutrients. In: Marschner P, editor. Mineral nutrition of higher plants. 3rd ed. London: Academic; 2010. p. 191–248.
Google Scholar
Hoagland DR, Arnon DI. The water culture method for growing plants without soil. Univ Calif Exp Stn Circ. 1938;347:1–39.
CAS
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.
Article
CAS
PubMed
Google Scholar
Casasoli M, Meliciani I, Cervone F, De Lorenzo G, Mattei B. Oligogalacturonide-induced changes in the nuclear proteome of Arabidopsis thaliana. Inter J Mass Spectrom. 2007;268:277–83.
Article
CAS
Google Scholar
Kinter M, Sherman NE. Protein sequencing and identification using tandem mass spectrometry. New York: Wiley-Interscience; 2000.
Book
Google Scholar
Parry RV, Turner JC, Rea PA. High purity preparations of higher plant vacuolar H+-ATPase reveal additional subunits: revised subunit composition. J Biol Chem. 1989;264:20025–32.
CAS
PubMed
Google Scholar
Vera-Estrella R, Barkla BJ, García-Ramírez L, Pantoja O. Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance. Plant Physiol. 2005;139:1507–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Höfner R, Vazquez-Moreno L, Winter K. Induction of crassulacean acid metabolism in Mesembryanthemum crystallinum by high salinity: mass increase and de novo synthesis of PEP-carboxylase. Plant Physiol. 1987;83:915–9.
Article
PubMed
PubMed Central
Google Scholar
Kirch H-H, Vera-Estrella R, Golldack D, Quigley F, Michalowski CB, Barkla BJ, Bohnert HJ. Expression of water channel proteins in Mesembryanthemum crystallinum. Plant Physiol. 2000;123:111–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rammesmayer G, Pichorner H, Adams P, Jensen RG, Bohnert HJ. Characterization of Imt 1, myo-inositol O-methyltransferase from Mesembryanthemum crystallinum. Archives Biochem Biophys. 1995;322:183–8.
Article
CAS
Google Scholar
Nelson DE, Rammesmayer G, Bohnert HJ. Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance. Plant Cell. 1998;10:753–64.
CAS
PubMed
PubMed Central
Google Scholar
VSN International. GenStat for windows 16th edition. Hemel Hempstead: VSN International; 2014. Web page: GenStat.co.uk.
Google Scholar
Hohorst HJ. L(-)- malate, determination with malate dehydrogenase and DPN. In: Bermeyer HU, editor. IN methods of enzymatic analysis. London: Academic; 1965. p. 328–34.
Chapter
Google Scholar
Forgac M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol. 2007;8:917–29.
Article
CAS
PubMed
Google Scholar