Alonso JM, Stepanova AN, Leisse TJ, et al. Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science. 2003;301:653–7.
Article
PubMed
Google Scholar
Andrés F, Porri A, Torti S, et al. SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at the Arabidopsis shoot apex to regulate the floral transition. Proc Natl Acad Sci U S A. 2014;111:E2760–9.
Article
PubMed Central
PubMed
Google Scholar
Arrigoni O, Tullio MCD. Ascorbic acid: much more than just an antioxidant. Biochimica et Biophysica Acta (BBA) - General Subjects. 2002;1569:1–9.
Article
CAS
Google Scholar
Arrigoni O, Tullio MCD. The role of ascorbic acid in cell metabolism: between gene-directed functions and unpredictable chemical reactions. J Plant Physiol. 2000;157:481–8.
Article
CAS
Google Scholar
Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2013;41:D991–5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Barth C, Moeder W, Klessig DF, Conklin PL. The Timing of Senescence and Response to Pathogens Is Altered in the Ascorbate-Deficient Arabidopsis Mutant vitamin c-1. Plant Physiol. 2004;134:1784–92.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bernier G, Havelange A, Houssa C, Petitjean A, Lejeune P. Physiological Signals That Induce Flowering. Plant Cell. 1993;5:1147–55.
Article
PubMed Central
CAS
PubMed
Google Scholar
Blanvillain R, Wei S, Wei P, Kim JH, Ow DW. Stress tolerance to stress escape in plants: role of the OXS2 zinc-finger transcription factor family. EMBO J. 2011;30:3812–22.
Article
PubMed Central
CAS
PubMed
Google Scholar
Booker J, Sieberer T, Wright W, et al. MAX1 Encodes a Cytochrome P450 Family Member that Acts Downstream of MAX3/4 to Produce a Carotenoid-Derived Branch-Inhibiting Hormone. Dev Cell. 2005;8:443–9.
Article
CAS
PubMed
Google Scholar
Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E. Inflorescence Commitment and Architecture in Arabidopsis. Science. 1997;275:80–3.
Article
CAS
PubMed
Google Scholar
Braun N, de Saint Germain A, Pillot JP, et al. The Pea TCP Transcription Factor PsBRC1 Acts Downstream of Strigolactones to Control Shoot Branching. Plant Physiol. 2012;158:225–38.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brunner AM, Nilsson O. Revisiting tree maturation and floral initiation in the poplar functional genomics era. New Phytologist. 2004;164:43–51.
Article
CAS
Google Scholar
Buban T, Faust M. Flower bud induction in apple trees: internal control and differentiation. Horticultural Reviews. 1982;4:174–203.
Article
CAS
Google Scholar
Castillejo C, Pelaz S. The Balance between CONSTANS and TEMPRANILLO Activities Determines FT Expression to Trigger Flowering. Curr Biol. 2008;18:1338–43.
Article
CAS
PubMed
Google Scholar
Celton JM, Gaillard S, Bruneau M, Pelletier S, Aubourg S, Martin-Magniette ML, Navarro L, Laurens F, Renou JP. Widespread anti-sense transcription in apple is correlated with siRNA production and indicates a large potential for transcriptional and/or post-transcriptional control. New Phytologist. 2014;203:287–99.
Article
CAS
PubMed
Google Scholar
Chaikiattiyos S, Menzel C, Rasmussen T. Floral Induction in Tropical Fruit Trees: Effects of Temperature and Water Supply. J Hortic Sci Biotechnol. 1994;69:397–416.
Google Scholar
Colville L, Smirnoff N. Antioxidant status, peroxidase activity, and PR protein transcript levels in ascorbate-deficient Arabidopsis thaliana vtc mutants. J Exp Bot. 2008;59:3857–68.
Article
CAS
PubMed
Google Scholar
Corbesier L, Lejeune P, Bernier G. The role of carbohydrates in the induction of flowering in Arabidopsis thaliana: comparison between the wild type and a starchless mutant. Planta. 1998;206:131–7.
Article
CAS
PubMed
Google Scholar
Costes E. Winter Bud Content According to Position in 3-year-old Branching Systems of “Granny Smith” Apple. Ann Bot. 2003;92:581–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Costes E, Crespel L, Denoyes B, Morel P, Demene MN, Lauri P-E, Wenden B. Bud structure, position and fate generate various branching patterns along shoots of closely related Rosaceae species: a review. Frontiers in Plant Sci. 2014;5:666.
Crabbé J, Escobedo-Alvarez JA. Activités méristématiques et cadre temporel assurant la transformation florale des bourgeons chez le Pommier (Malus × domestica Borkh., cv. Golden Delicious). In: L’Arbre, Biologie et développement, 2ème Colloque International sur l’Arbre, C. Edelin (ed. Montpellier: Hors Série; 1991. p. 369–79.
Google Scholar
Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005;139:5–17.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dadpour MR, Movafeghi A, Grigorian W, Omidi Y. Determination of floral initiation in Malus domestica: a novel morphogenetic approach. Biologia Plantarum. 2011;55:243–52.
Article
CAS
Google Scholar
Durand JB, Guitton B, Peyhardi J, Holtz Y, Guédon Y, Trottier C, Costes, E. New insights for estimating the genetic value of segregating apple progenies for irregular bearing during the first years of tree production. J Exp Bot. 2013;64:5099–113.
Du Z, Zhou X, Ling Y, Zhang Z, Su Z. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010;38:W64–70.
Esumi T, Tao R, Yonemori K. Isolation of LEAFY and TERMINAL FLOWER 1 homologues from six fruit tree species in the subfamily Maloideae of the Rosaceae. Sex Plant Reprod. 2005;17:277–87.
Article
CAS
Google Scholar
Eveland AL, Jackson DP. Sugars, signalling, and plant development. J Exp Bot. 2012;63:3367-77.
Flachowsky H, Szankowski I, Waidmann S, Peil A, Tränkner C, Hanke MV. The MdTFL1 gene of apple (Malus × domestica Borkh.) reduces vegetative growth and generation time. Tree Physiol. 2012;32:1288–301.
Article
CAS
PubMed
Google Scholar
Foster T, Johnston R, Seleznyova A. A morphological and quantitative characterization of early floral development in apple (Malus x domestica Borkh.). Ann Bot. 2003;92:199–206.
Article
PubMed Central
PubMed
Google Scholar
Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41:D808–15.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fulford RM. The morphogenesis of apple buds. III. The inception of flowers. Ann Bot. 1966;30:207–19.
Google Scholar
Gibson SI. Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol. 2005;8:93–102.
Article
CAS
PubMed
Google Scholar
Guitton B, Kelner JJ, Velasco R, Gardiner SE, Chagné D, Costes E. Genetic control of biennial bearing in apple. J Exp Bot. 2012;63:131–49.
Article
PubMed Central
CAS
PubMed
Google Scholar
Halliday KJ, Koornneef M, Whitelam GC. Phytochrome B and at Least One Other Phytochrome Mediate the Accelerated Flowering Response of Arabidopsis thaliana L. to Low Red/Far-Red Ratio. Plant Physiol. 1994;104:1311–5.
PubMed Central
CAS
PubMed
Google Scholar
Hanke MV, Flachowsky H, Peil A, Hättasch C. No flower no fruit - genetic potentials to trigger flowering in fruit trees. Genes Genomes Genomics. 2007;1:1–20.
Google Scholar
Hättasch C, Flachowsky H, Kapturska D, Hanke MV. Isolation of flowering genes and seasonal changes in their transcript levels related to flower induction and initiation in apple (Malus domestica). Tree Physiol. 2008;28:1459–66.
Article
PubMed
Google Scholar
Haydon MJ, Hearn TJ, Bell LJ, Hannah MA, Webb AAR. Metabolic regulation of circadian clocks. Semin Cell Dev Biol. 2013;24:414–21.
Article
CAS
PubMed
Google Scholar
Hucbourg B, Montagnon J, Ramonguilhem M, Lauri P. Fiche variétale: Gala et ses mutants. Réussir - Fruits et Légumes. 2003;221:insert4p.
Huet J. Etude des effets des feuilles et des fruits sur l’induction florale des brachyblastes du poirier. Physiologie végétale. 1972;10:529–45.
Google Scholar
Hu YX, Wang YH, Liu XF, Li JY. Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Res. 2004;14:8–15.
Article
CAS
PubMed
Google Scholar
Immink RGH, Posé D, Ferrario S, Ott F, Kaufmann K, Valentim FL, Folter, S de, Wal, F van der, Dijk ADJ van, Schmid, M, Angenent, GC. Characterization of SOC1’s Central Role in Flowering by the Identification of Its Upstream and Downstream Regulators. Plant Physiol. 2012;160:433–49.
Jackson DI, Sweet GB. Flower initiation in temperate woody plants. A review based largely on the literature of conifers and deciduous fruit trees. In: Horticultural Abstracts. 1972. p. 9–24.
Google Scholar
Jaya ES, Clemens J, Song J, Zhang H, Jameson PE. Quantitative expression analysis of meristem identity genes in Eucalyptus occidentalis: AP1 is an expression marker for flowering. Tree Physiol. 2010;30:304–12.
Article
CAS
PubMed
Google Scholar
Jeong DH, Sung SK, An G. Molecular cloning and characterization of Constans-like cDNA clones of the “Fuji” apple. J Plant Biol. 1999;42:23–31.
Article
CAS
Google Scholar
Johansson M, Staiger D. SRR1 is essential to repress flowering in non-inductive conditions in Arabidopsis thaliana. J Exp Bot. 2014;65:5811–22.
Article
PubMed Central
CAS
PubMed
Google Scholar
Johansson E, Olsson O, Nyström T. Progression and specificity of protein oxidation in the life cycle of Arabidopsis thaliana. J Biol Chem. 2004;279:22204–8.
Article
CAS
PubMed
Google Scholar
Jonkers H. Biennial bearing in apple and pear: a literature survey. Sci Hortic. 1979;11:303–17.
Article
CAS
Google Scholar
Kaufmann K, Wellmer F, Muiño JM, Ferrier T, Wuest SE, Kumar V, Serrano-Mislata, A, Madueno, F, et al. Orchestration of floral initiation by APETALA1. Science. 2010;328:85–9.
Kocsy G, Tari I, Vanková R, Zechmann B, Gulyás Z, Poór P, Galiba, G. Redox control of plant growth and development. Plant Sci. 2013;211:77–91.
Kotoda N, Hayashi H, Suzuki M, et al. Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus x domestica Borkh.). Plant Cell Physiol. 2010;51:561–75.
Article
CAS
PubMed
Google Scholar
Kotoda N, Iwanami H, Takahashi S, Abe K. Antisense expression of MdTFL1, a TFL1-like gene, reduces the juvenile phase in apple. J Am Soc Hortic Sci. 2006;131:74–81.
CAS
Google Scholar
Kotoda N, Wada M. MdTFL1, a TFL1-like gene of apple, retards the transition from the vegetative to reproductive phase in transgenic Arabidopsis. Plant Sci. 2005;168:95–104.
Article
CAS
Google Scholar
Kotoda N, Wada M, Komori S, Kidou S, Abe K, Masuda T, Soejima, J. Expression pattern of homologues of floral meristem identity genes LFY and AP1 during flower development in apple. J Am Soc Hortic Sci. 2000;125:398–403.
Kotoda N, Wada M, Kusaba S, Kano-Murakami Y, Masuda T, Soejima J. Overexpression of MdMADS5, an APETALA1-like gene of apple, causes early flowering in transgenic Arabidopsis. Plant Sci. 2002;162:679–87.
Article
CAS
Google Scholar
Kotoda N, Wada M, Masuda T, Soejima J. The break-through in the reduction of juvenile phase in apple using transgenic approaches. In: XXVI International Horticultural Congress: Biotechnology in Horticultural Crop Improvement: Achievements, Opportunities and 625. 2002. p. 337–43.
Google Scholar
Kurokura T, Mimida N, Battey NH, Hytönen T. The regulation of seasonal flowering in the Rosaceae. J Exp Bot. 2013;64:4131–41.
Article
CAS
PubMed
Google Scholar
Lauri PE, Térouanne E, Lespinasse JM, Regnard JL, Kelner JJ. Genotypic differences in the axillary bud growth and fruiting pattern of apple fruiting branches over several years - an approach to regulation of fruit bearing. Sci Hortic. 1995;64:265–81.
Article
Google Scholar
Lee J, Lee I. Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot. 2010;61:2247–54.
Article
CAS
PubMed
Google Scholar
Levy YY, Dean C. The Transition to Flowering. Plant Cell. 1998;10:1973–89.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lifschitz E, Ayre BG, Eshed Y. Florigen and anti-florigen – a systemic mechanism for coordinating growth and termination in flowering plants. Frontiers in Plant Sci. 2014;5:465.
Article
Google Scholar
Liljegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS, Yanofsky MF. Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 Specify Meristem Fate. Plant Cell. 1999;11:1007–18.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lu Q, Zhao L, Li D, Hao D, Zhan Y, Li W. A GmRAV Ortholog Is Involved in Photoperiod and Sucrose Control of Flowering Time in Soybean. PLoS One. 2014;9:e89145.
Article
PubMed Central
PubMed
Google Scholar
Martínez C, Pons E, Prats G, León J. Salicylic acid regulates flowering time and links defense responses and reproductive development. Plant J. 2004;37:209–17.
Article
PubMed
Google Scholar
Martinez-Zapater J, Coupland G, Dean C, Koornneef M. The transition to flowering in Arabidopsis. In: Arabidopsis. NY: Cold Spring Harbor Laboratory Press, Cold Spring Harbor; 1994. p. 403–33.
Google Scholar
Matías-Hernández L, Aguilar-Jaramillo AE, Marín-González E, Suárez-López P, Pelaz S. RAV genes: regulation of floral induction and beyond. Ann Bot. 2014;114:1459–70.
Article
PubMed Central
PubMed
Google Scholar
Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R. Double Mutants Deficient in Cytosolic and Thylakoid Ascorbate Peroxidase Reveal a Complex Mode of Interaction between Reactive Oxygen Species, Plant Development, and Response to Abiotic Stresses. Plant Physiol. 2007;144:1777–85.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mimida N, Kidou S, Kotoda N. Constitutive expression of two apple (Malus x domestica Borkh.) homolog genes of LIKE HETEROCHROMATIN PROTEIN1 affects flowering time and whole-plant growth in transgenic Arabidopsis. Mol Genet Genomics. 2007;278:295–305.
Article
CAS
PubMed
Google Scholar
Mimida N, Kotoda N, Ueda T, Igarashi M, Hatsuyama Y, Iwanami H, Moriya S, Abe K. Four TFL1/CEN-like genes on distinct linkage groups show different expression patterns to regulate vegetative and reproductive development in apple (Malus x domestica Borkh.). Plant Cell Physiol. 2009;50:394–412.
Monselise SP, Goldschmidt EE. Alternate Bearing in Fruit Trees. Hortic Rev. 1982;4:128–73.
Article
Google Scholar
Muñoz-Fambuena N, Mesejo C, Agustí M, Tárraga S, Iglesias DJ, Primo-Millo E, González-Mas MC. Proteomic analysis of “Moncada” mandarin leaves with contrasting fruit load. Plant Physiol Biochem. 2013;62:95–106.
Nakagawa M, Honsho C, Kanzaki S, Shimizu K, Utsunomiya N. Isolation and expression analysis of FLOWERING LOCUS T-like and gibberellin metabolism genes in biennial-bearing mango trees. Sci Hortic. 2012;139:108–17.
Article
CAS
Google Scholar
Neilsen JC, Dennis FG. Effects of seed number, fruit removal, bourse shoot length and crop density on flowering in “Spencer Seedless” apple. Acta Horticult. 2000;527:137–46.
Article
Google Scholar
Niwa M, Daimon Y, Kurotani K, et al. BRANCHED1 Interacts with FLOWERING LOCUS T to Repress the Floral Transition of the Axillary Meristems in Arabidopsis. Plant Cell. 2013;25:1228–42.
Article
PubMed Central
CAS
PubMed
Google Scholar
Osnato M, Castillejo C, Matías-Hernández L, Pelaz S. TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis. Nat Commun. 2012;3:808–15.
Article
PubMed
Google Scholar
Porri A, Torti S, Romera-Branchat M, Coupland G. Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development. 2012;139:2198–209.
Article
CAS
PubMed
Google Scholar
Preston JC, Hileman LC. Functional Evolution in the Plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) Gene Family. Frontiers in Plant Sci. 2013;4:1–13.
Google Scholar
Ramírez F, Davenport TL, Fischer G. The number of leaves required for floral induction and translocation of the florigenic promoter in mango (Mangifera indica L.) in a tropical climate. Sci Hortic. 2010;123:443–53.
Article
Google Scholar
R Core Development Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2014. Available at: http://www.R-project.org/.
Google Scholar
Reid KE, Olsson N, Schlosser J, Peng F, Lund ST. An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol. 2006;6:27.
Article
PubMed Central
PubMed
Google Scholar
Robles P, Pelaz S. Flower and fruit development in Arabidopsis thaliana. Int J Dev Biol. 2005;49:633–43.
Article
CAS
PubMed
Google Scholar
Romera-Branchat M, Andrés F, Coupland G. Flowering responses to seasonal cues: what’s new? Curr Opin Plant Biol. 2014;21:120–7.
Article
CAS
PubMed
Google Scholar
Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science. 2000;288:1613–6.
Sawa M, Kay SA. GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2011;108:11698–703.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schmidt T, McFerson J, Elfving D, Whiting M. Practical gibberellic acid programs for mitigation of biennial bearing in apple. Acta Horticult. 2009;884:663–70.
Google Scholar
Scofield S, Murray JAH. KNOX gene function in plant stem cell niches. Plant Mol Biol. 2006;60:929–46.
Article
CAS
PubMed
Google Scholar
Sgamma T, Jackson A, Muleo R, Thomas B, Massiah A. TEMPRANILLO is a regulator of juvenility in plants. Sci Rep. 2014;4:3704.http://www.nature.com/articles/srep03704
Shalom L, Samuels S, Zur N, Shlizerman L, Doron-Faigenboim A, Blumwald E, Sadka A. Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds. J Exp Bot. 2014;65:3029-3044.
Shalom L, Samuels S, Zur N, Shlizerman L, Zemach H, Weissberg M, Ophir R, Blumwald E, ,Sadka A. Alternate Bearing in Citrus: Changes in the Expression of Flowering Control Genes and in Global Gene Expression in ON- versus OFF-Crop Trees. PLoS One. 2012;7:e46930.
Article
PubMed Central
CAS
PubMed
Google Scholar
Singh LB. Studies in biennial bearing: III. Growth studies in “ON” and “OFF” year trees. J Hortic Sci. 1948;24: 123–48.
Smith HM, Samach A. Constraints to obtaining consistent annual yields in perennial tree crops. I: Heavy fruit load dominates over vegetative growth. Plant Sci. 2013;207:158–67.
Article
CAS
PubMed
Google Scholar
Song YH, Ito S, Imaizumi T. Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci. 2013;18:575–83.
Article
PubMed Central
CAS
PubMed
Google Scholar
Souer E, van Houwelingen A, Kloos D, Mol J, Koes R. The No Apical Meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell. 1996;85:159–70.
Article
CAS
PubMed
Google Scholar
Stern RA, Adato I, Goren M, Eisenstein D, Gazit S. Effects of autumnal water stress on litchi flowering and yield in Israel. Sci Hortic. 1993;54:295–302.
Article
Google Scholar
Sung SK, Yu GH, An G. Characterization of MdMADS2, a Member of the SQUAMOSA Subfamily of Genes, in Apple. Plant Physiol. 1999;120:969–78.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sung SK, Yu GH, Nam J, Jeong DH, An G. Developmentally regulated expression of two MADS-box genes, MdMADS3 and MdMADS4, in the morphogenesis of flower buds and fruits in apple. Planta. 2000;210:519–28.
Article
CAS
PubMed
Google Scholar
Sung ZR, Chen L, Moon YH, Lertpiriyapong K. Mechanisms of floral repression in Arabidopsis. Curr Opin Plant Biol. 2003;6:29–35.
Article
CAS
PubMed
Google Scholar
Suter L, Rüegg M, Zemp N, Hennig L, Widmer A. Gene regulatory variation mediates flowering responses to vernalization along an altitudinal gradient in Arabidopsis thaliana. Plant Physiol. 2014;166:1928–42.
Article
PubMed Central
PubMed
Google Scholar
Tanaka N, Wada M, Komori S, Bessho H, Suzuki A. Functional analysis of MdPI, the PISTILLATA gene homologue of apple, in Arabidopsis. J Japanese Soc Hortic Sci. 2007;76:125–32.
Article
CAS
Google Scholar
Tanaka N, Ureshino A, Shigeta N, Mimida N, Komori S, Takahashi S, Tanaka-Moriya Y, Wada M. Overexpression of Arabidopsis FT gene in apple leads to perpetual flowering. Plant Biotechnol. 2014;31:11–20.
Tan FC, Swain SM. Genetics of flower initiation and development in annual and perennial plants. Physiol Plant. 2006;128:8–17.
Article
CAS
Google Scholar
Torti S, Fornara F, Vincent C, Andrés F, Nordström K, Göbel U, Knoll D, Schoof H, Coupland G. Analysis of the Arabidopsis Shoot Meristem Transcriptome during Floral Transition Identifies Distinct Regulatory Patterns and a Leucine-Rich Repeat Protein That Promotes Flowering. Plant Cell. 2012;24:444–62.
Tromp J. Flower-bud formation in apple as affected by various gibberellins. J Hortic Sci. 1982;57:277–82.
Google Scholar
Turnbull C. Long-distance regulation of flowering time. J Exp Bot. 2011;62:4399–413.
Article
CAS
PubMed
Google Scholar
Udvardi MK, Czechowski T, Scheible WR. Eleven golden rules of quantitative RT-PCR. Plant Cell Online. 2008;20:1736–7.
Article
CAS
Google Scholar
Van der Linden CG, Vosman B, Smulders MJM. Cloning and characterization of four apple MADS box genes isolated from vegetative tissue. J Exp Bot. 2002;53:1025–36.
Article
PubMed
Google Scholar
Velasco R, Zharkikh A, Affourtit J, et al. The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet. 2010;42:833–9.
Article
CAS
PubMed
Google Scholar
Wada M, Cao Q, Kotoda N, Soejima J, Masuda T. Apple has two orthologues of FLORICAULA/LEAFY involved in flowering. Plant Mol Biol. 2002;49:567–77.
Article
CAS
PubMed
Google Scholar
Wahl V, Ponnu J, Schlereth A, et al. Regulation of Flowering by Trehalose-6-Phosphate Signaling in Arabidopsis thaliana. Science. 2013;339:704–7.
Article
CAS
PubMed
Google Scholar
Wang JW, Czech B, Weigel D. miR156-Regulated SPL Transcription Factors Define an Endogenous Flowering Pathway in Arabidopsis thaliana. Cell. 2009;138:738–49.
Article
CAS
PubMed
Google Scholar
Wang JW, Park MY, Wang LJ, Koo Y, Chen XY, Weigel D, Poethig RS. miRNA Control of Vegetative Phase Change in Trees. PLoS Genet. 2011;7:e1002012.
Wilkie JD, Sedgley M, Olesen T. Regulation of floral initiation in horticultural trees. J Exp Bot. 2008;59:3215–28.
Article
CAS
PubMed
Google Scholar
Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS. The Sequential Action of miR156 and miR172 Regulates Developmental Timing in Arabidopsis. Cell. 2009;138:750–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wu G, Poethig RS. Temporal Regulation of Shoot Development in Arabidopsis Thaliana By mir156 and Its Target SPL3. Development. 2006;133:3539–47.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wünsche JN, Palmer JW, Greer DH. Effects of Crop Load on Fruiting and Gas-exchange Characteristics of `Braeburn’/M.26 Apple Trees at Full Canopy. J Am Soc Hortic Sci. 2000;125:93–9.
Google Scholar
Yao JL, Dong YH, Kvarnheden A, Morris B. Seven MADS-box Genes in Apple are Expressed in Different Parts of the Fruit. J Am Soc Hortic Sci. 1999;124:8–13.
CAS
Google Scholar
Yao JL, Dong YH, Morris BAM. Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Natl Acad Sci U S A. 2001;98:1306–11.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yoo SJ, Chung KS, Jung SH, Yoo SY, Lee JS, Ahn JH. BROTHER OF FT AND TFL1 (BFT) has TFL1-like activity and functions redundantly with TFL1 in inflorescence meristem development in Arabidopsis. Plant J. 2010;63:241–53.
Article
CAS
PubMed
Google Scholar
Zhu QH, Helliwell CA. Regulation of flowering time and floral patterning by miR172. J Exp Bot. 2011;62:487–95.
Article
CAS
PubMed
Google Scholar