Thomma BP, Van Esse HP, Crous PW, De Wit PJ. Cladosporium fulvum (syn. Passalora fulva), a highly specialized plant pathogen as a model for functional studies on plant pathogenic Mycosphaerellaceae. Mol Plant Pathol. 2005;6(4):379–93.
Article
CAS
PubMed
Google Scholar
Hammond-Kosack KE, Jones JD. Incomplete dominance of tomato Cf genes for resistance to Cladosporium fulvum. Mol Plant Microbe In. 1994;7:58–70.
Article
CAS
Google Scholar
Joosten MH, De Wit PJ. The tomato-Cladosporium fulvum interaction: a versatile experimental system to study plant-pathogen interactions. Annu Rev Phytopathol. 1999;37:335–67.
Article
CAS
PubMed
Google Scholar
Rivas S, Thomas CM. Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum. Annu Rev Phytopathol. 2005;43:395–436.
Article
CAS
PubMed
Google Scholar
Lindhout P, Korta W, Cislik M, Vos I, Gerlagh T. Further identification of races of Cladosporium fulvum (Fulvia fulva) on tomato originating from the Netherlands, France and Poland. Neth J Plant Path. 1989;95:143–8.
Article
Google Scholar
Wang A, Meng F, Xu X, Wang Y, Li J. Development of molecular markers linked to Cladosporium fulvum resistant gene Cf-6 in tomato by RAPD and SSR methods. HortSci. 2007;42:11–5.
CAS
Google Scholar
Parniske M, Hammond-Kosack KE, Golstein C, Thomas CM, Jones DA, Harrison K, Jones JD. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell. 1997;91:821–32.
Article
CAS
PubMed
Google Scholar
Nekrasov V, Ludwig AA, Jones JD. CITRX thioredoxin is a putative adaptor protein connecting Cf-9 and the ACIK1 protein kinase during the Cf-9/Avr9-induced defence response. FEBS let. 2006;580:4236–41.
Article
CAS
Google Scholar
Gabriëls SH, Takken FL, Vossen JH, De Jong CF, Liu Q, Turk SC, Joosten MH. cDNA-AFLP combined with functional analysis reveals novel genes involved in the hypersensitive response. Mol Plant Microbe In. 2006;19:567–76.
Article
Google Scholar
Kanwar JS, Kerr EA, Harney PM. Linkage of Cf-1 to Cf-11 genes for resistance to leaf mold Cladosporium fulvum Cke. Rep Tomato Genet Coop. 1980;30:20–1.
Google Scholar
Kanwar JS, Kerr EA, Harney PM. Linkage of the Cf-12 to Cf-24 genes for resistance to tomato leaf mold Cladosporium fulvum Cke. Rep Tomato Genet Coop. 1980;30:22–3.
Google Scholar
Westerink N, Brandwagt BF, De Wit PJ, Joosten MH. Cladosporium fulvum circumvents the second functional resistance gene homologue at the Cf-4 locus (Hcr9-4E) by secretion of a stable avr4E isoform. Mol Microbiol. 2004;54:533–45.
Article
CAS
PubMed
Google Scholar
Balint-Kurti PJ, Dixon MS, Jones DA, Norcott KA, Jones JDG. RFLP linkage analysis of the Cf-4 and Cf-9 genes for resistance to Cladosporium fulvum in tomato. Theor Appl Genet. 1994;88:691–700.
Article
CAS
PubMed
Google Scholar
Dixon MS, Jones DA, Keddie JS, Thomas CM, Harrison K, Jones JDG. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell. 1996;84:451–9.
Article
CAS
PubMed
Google Scholar
Dixon MS, Hatzixanthis K, Jones DA, Harrison K, Jones JDG. The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine rich repeat copy number. Plant Cell. 1998;10:1915–25.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jones DA, Dickinson MJ, Balint-Kurti PJ, Dixon MS, Jones JDG. Two complex resistance loci revealed in tomato by classical and RFLP mapping of the Cf-2, Cf-4, Cf-5 and Cf-9 genes for resistance to Cladosporium fulvum. Mol Plant Microbe In. 1993;6:348–57.
Article
CAS
Google Scholar
Thomas CM, Jones DA, Parniske M, Harrison K, Balint-Kurti PJ, Hatzixanthis K, Jones JDG. Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell. 1997;9:2209–24.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhao TT, Liu G, Li S, Li JF, Jiang JB, Zhang H, Kang LG, Chen XL, Xu XY. Differentially expressed gene transcripts related to the Cf-19-mediated resistance response to Cladosporium fulvum infection in tomato. Physiol Mol Plant P. 2015;89:8–15.
Article
CAS
Google Scholar
Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Zheng H. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One. 2013;8, e58700.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang Y, Wang L, Xin H, Li D, Ma C, Ding X, Hong W, Zhang X. Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biol. 2013;13:141.
Article
PubMed Central
PubMed
Google Scholar
Kerr EA, Bailey DL. Resistance to Cladosporium fulvum Cke obtained from wild species of tomato. Can J Bot. 1964;42:1541–53.
Article
Google Scholar
Soumpourou E, Iakovidis M, Chartrain L, Lyall V, Thomas CM. The Solanum pimpinellifolium Cf-ECP1 and Cf-ECP4 genes for resistance to Cladosporium fulvum are located at the Milky Way locus on the short arm of chromosome 1. Theor Appl Genet. 2007;115:1127–36.
Article
CAS
PubMed
Google Scholar
Haanstra JPW, Laugé R, Meijer-Dekens F, Bonnema G, De Wit PJGM, Lindhout P. The Cf-ECP2 gene is linked to, but not part of, the Cf-4/Cf-9 cluster on the short arm of chromosome 1 in tomato. Mol Gen Genet. 1999;262:839–45.
Article
CAS
PubMed
Google Scholar
Yuan Y, Haanstra J, Lindhout P, Bonnema G. The Cladosporium fulvum resistance gene Cf-ECP3 is part of the Orion cluster on the short arm of tomato Chromosome 1. Mol Breed. 2002;10:45–50.
Article
CAS
Google Scholar
Haanstra JPW, Meijer-Dekens F, Lauge R, Seetanah DC, Joosten MHAJ, De Wit PJGM, Lindhout P. Mapping strategy for resistance genes against Cladosporium fulvum on the short arm of chromosome 1 of tomato: Cf-ECP5 near the Hcr9 Milky Way cluster. Theor Appl Genet. 2000;101:661–8.
Article
CAS
Google Scholar
Thomas CM, Dixon MS, Parniske M, Golstein C, Jones JDG. Genetic and molecular analysis of tomato Cf genes for resistance to Cladosporium fulvum. Philosophical Transactions of the Royal Society of London. Ser B Biol Sci. 1998;353:1413–24.
Article
CAS
Google Scholar
Wulff BBH, Chakrabarti A, Jones DA. Recognitional specificity and evolution in the tomato-Cladosporium fulvum pathosystem. Mol Plant Microbe In. 2009;22:1191–202.
Article
CAS
Google Scholar
Cai X, Takken FL, Joosten MH, De Wit PJ. Specific recognition of Avr4 and Avr9 results in distinct patterns of hypersensitive cell death in tomato, but similar patterns of defence-related gene expression. Mol Plant Pathol. 2001;2(2):77e86.
Article
Google Scholar
Michelmore R, Paran I, Kesseli RV. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A. 1991;88:9828–32.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fulton TM, Chunwongse J, Tanksley SD. Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rpt. 1995;13:207–9.
Article
CAS
Google Scholar
Chao X, Chen L, Rong TZ, Li R, Xiang Y, Wang P, Liu CH, Dong XQ, Liu B, Zhao D, Wei RJ, Lan H. Identification of a new maize inflorescence meristem mutant and association analysis using SLAF-seq method. Euphytica. 2015;202(1):1–10.
Article
Google Scholar
Bai H, Cao Y, Quan J, Dong L, Li Z, Zhu Y, Li D. Identifying the genome-wide sequence variations and developing new molecular markers for genetics research by re-sequencing a landrace cultivar of foxtail millet. PLoS One. 2013;8, e73514.
Article
PubMed Central
CAS
PubMed
Google Scholar
Consortium, The Tomato Genome. The tomato genome sequence provides insights into fleshy fruit evolution. Nature. 2012;485(7400):635–41.
Article
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar
Rotenberg D, Thompson TS, German TL, Willis DK. Methods for effective real-time RT-PCR analysis of virus-induced gene silencing. J Virol Methods. 2006;138:49–59.
Article
CAS
PubMed
Google Scholar