Tammisola J. Towards much more efficient biofuel crops - can sugarcane pave the way? GM Crops. 2010;1(4):181–98.
Article
PubMed
Google Scholar
Moore P. Temporal and spatial regulation of sucrose accumulation in sugarcane stem. Aust J Plant Physiol. 1995;22(4):69–80.
Article
Google Scholar
Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, Souza GM. Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol J. 2010;8(3):263–76.
Article
PubMed
CAS
Google Scholar
D’Hont A. Unraveling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenet Genome Res. 2005;109(1–3):27–33.
PubMed
Google Scholar
D’Hont A, Grivet L, Feldmann P, Rao S, Berding N, Glaszmann JC. Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet. 1996;250(4):405–13.
Article
PubMed
Google Scholar
D’Hont A, Lu YH, León DG, Grivet L, Feldmann P, Lanaud C, et al. A molecular approach to unraveling the genetics of sugarcane, a complex polyploid of the Andropogoneae tribe. Genome. 1994;37(2):222–30.
Article
PubMed
Google Scholar
Aitken KS, McNeil MD, Berkman PJ, Hermann S, Kilian A, Bundock PC, et al. Comparative mapping in the Poaceae family reveals translocations in the complex polyploid genome of sugarcane. BMC Plant Biol. 2014;14:190.
Article
PubMed
PubMed Central
Google Scholar
Grivet L, Arruda P. Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Biol. 2002;5(2):122–7.
Article
PubMed
CAS
Google Scholar
Joyce P, Hermann S, O’Connell A, Dinh Q, Shumbe L, Lakshmanan P. Field performance of transgenic sugarcane produced using Agrobacterium and biolistics methods. Plant Biotech J. 2014;12(4):411–24.
Article
CAS
Google Scholar
Manickavasagam M, Ganapathi A, Anbazhagan VR, Sudhakar B, Selvaraj N, Vasudevan A, et al. Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep. 2004;23(3):134–43.
Article
PubMed
CAS
Google Scholar
Gao SJ, Damaj MB, Park JW, Beyene G, Buenrostro-Nava MT, Molina J, et al. Enhanced transgene expression in sugarcane by co-expression of virus-encoded rna silencing suppressors. Plos One. 2013;8(6):13.
Google Scholar
Molinari HBC, Marur CJ, Daros E, de Campos MKF, de Carvalho J, Bespalhok JC, et al. Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plant. 2007;130(2):218–29.
Article
CAS
Google Scholar
Zale J, Jung, J.H., Kim, J.Y., Pathak, B., Karan, R.Liu, H.Chen, X.Wu, H. Candreva, J.Zhai Z.Shanklin, J. Altpeter, F.: Metabolic engineering of sugarcane to accumulate energy-dense triacylglycerols in vegetative biomass. Plant Biotech J. 2015; doi: 10.1111/pbi.12411.
Menossi M, Silva-Filho MC, Vincentz M, Van-Sluys MA, Souza GM. Sugarcane functional genomics: gene discovery for agronomic trait development. Int J Plant Genomics. 2008;2008:458732.
Article
PubMed
CAS
PubMed Central
Google Scholar
Arruda P. Genetically modified sugarcane for bioenergy generation. Curr Opin Biotechnol. 2012;23(3):315–22.
Article
PubMed
CAS
Google Scholar
Marchiori P, Machado E, Ribeiro V. Photosynthetic limitations imposed by self-shading in field-grown sugarcane varieties. Field Crops Res. 2014;155:30–7.
Article
Google Scholar
Makino A. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol. 2011;155(1):125–9.
Article
PubMed
CAS
PubMed Central
Google Scholar
Long SP, Zhu XG, Naidu SL, Ort DR. Can improvement in photosynthesis increase crop yields? Plant Cell Environ. 2006;29(3):315–30.
Article
PubMed
CAS
Google Scholar
De Souza AP, Gaspar M, Da Silva EA, Ulian EC, Waclawovsky AJ, Nishiyama MY, et al. Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant Cell Environ. 2008;31(8):1116–27.
Article
PubMed
CAS
Google Scholar
Marchiori PER, Ribeiro RV, da Silva L, Machado RS, Machado EC, Scarpari MS. Plant growth, canopy photosynthesis and light availability in three sugarcane varieties. Sugar Tech. 2010;12(2):160–6.
Article
CAS
Google Scholar
Manandhar-Shrestha K, Tamot B, Pratt EP, Saitie S, Bräutigam A, Weber AP, et al. Comparative proteomics of chloroplasts envelopes from bundle sheath and mesophyll chloroplasts reveals novel membrane proteins with a possible role in c4-related metabolite fluxes and development. Front Plant Sci. 2013;4:65.
Article
PubMed
CAS
PubMed Central
Google Scholar
Langdale JA. C4 cycles: past, present, and future research on C4 photosynthesis. Plant Cell. 2011;23(11):3879–92.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bräutigam A, Mullick T, Schliesky S, Weber AP. Critical assessment of assembly strategies for non-model species mRNA-Seq data and application of next-generation sequencing to the comparison of C3 and C4 species. J Exp Bot. 2011;62(9):3093–102.
Article
PubMed
CAS
Google Scholar
Denton AK, Simon R, Weber AP. C4 photosynthesis: from evolutionary analyses to strategies for synthetic reconstruction of the trait. Curr Opin Plant Biol. 2013;16(3):315–21.
Article
PubMed
CAS
Google Scholar
Wardlaw I. The control of carbon partitioning in plants. New Phytol. 1990;116(3):341–81.
Article
CAS
Google Scholar
Paul MJ, Foyer CH. Sink regulation of photosynthesis. J Exp Bot. 2001;52(360):1383–400.
Article
PubMed
CAS
Google Scholar
McCormick AJ, Watt DA, Cramer MD. Supply and demand: sink regulation of sugar accumulation in sugarcane. J Exp Bot. 2009;60(2):357–64.
Article
PubMed
CAS
Google Scholar
McCormick AJ, Cramer MD, Watt DA. Sink strength regulates photosynthesis in sugarcane. New Phytol. 2006;171(4):759–70.
Article
PubMed
CAS
Google Scholar
Lobo AKM, Martins MD, Neto MCL, Machado EC, Ribeiro RV, Silveira JAG. Exogenous sucrose supply changes sugar metabolism and reduces photosynthesis of sugarcane through the down-regulation of Rubisco abundance and activity. J Plant Physiol. 2015;179:113–21.
Article
PubMed
CAS
Google Scholar
Sheen J. Metabolic repression of transcription in higher plants. Plant Cell. 1990;2(10):1027–38.
Article
PubMed
CAS
PubMed Central
Google Scholar
Black C, Loboda T, Chen J, Sung S. Can sucrose cleavage enzymes serve as markers for sink strength and is sucrose a signal molecule during plant sink development? in International Symposium on Sucrose Metabolism. Amer Soc Plant Physiol. 1995;49-64.
Koch KE, Wu Y, Xu J. Sugar and metabolic regulation of genes for sucrose metabolism: potential influence of maize sucrose synthase and soluble invertase responses on carbon partitioning and sugar sensing. J Exp Bot. 1996;47 Spec No:1179–85.
Article
PubMed
CAS
Google Scholar
Koch KE. Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol. 1996;47:509–40.
Article
PubMed
CAS
Google Scholar
Pego JV, Kortstee AJ, Huijser C, Smeekens SC. Photosynthesis, sugars and the regulation of gene expression. J Exp Bot. 2000;51 Spec No:407–16.
Article
PubMed
CAS
Google Scholar
Rolland F, Moore B, Sheen J. Sugar sensing and signaling in plants. Plant Cell. 2002;14(Suppl):S185–205.
PubMed
CAS
PubMed Central
Google Scholar
Lima D, Santos H, Tiné M, Molle F, Buckeridge M. Patterns of expression of cell wall related genes in sugar cane. Genetics Mol Biol. 2001;24(1–4):191–8.
Article
CAS
Google Scholar
Carson D, Huckett B, Botha F. Sugarcane ESTs differentially expressed in immature and maturing internodal tissue. Plant Sci. 2002;162:289–300.
Article
CAS
Google Scholar
Casu RE, Jarmey JM, Bonnett GD, Manners JM. Identification of transcripts associated with cell wall metabolism and development in the stem of sugarcane by Affymetrix GeneChip Sugarcane Genome Array expression profiling. Funct Integr Genomics. 2007;7(2):153–67.
Article
PubMed
CAS
Google Scholar
Casu RE, Dimmock CM, Chapman SC, Grof CP, McIntyre CL, Bonnett GD, et al. Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling. Plant Mol Biol. 2004;54(4):503–17.
Article
PubMed
Google Scholar
Casu RE, Grof CP, Rae AL, McIntyre CL, Dimmock CM, Manners JM. Identification of a novel sugar transporter homologue strongly expressed in maturing stem vascular tissues of sugarcane by expressed sequence tag and microarray analysis. Plant Mol Biol. 2003;52(2):371–86.
Article
PubMed
CAS
Google Scholar
Zambrosi FCB, Ribeiro RV, Marchiori PER, Cantarella H, Landell MGA. Sugarcane performance under phosphorus deficiency: physiological responses and genotypic variation. Plant Soil. 2015;386(1–2):273–83.
Article
CAS
Google Scholar
Ribeiro RV, Machado RS, Machado EC, Machado D, Magalhaes JR, Landell MGA. Revealing drought-resistance and productive patterns in sugarcane genotypes by evaluating both physiological responses and stalk yield. Exp Agricul. 2013;49(2):212–24.
Article
Google Scholar
Cahoon AB, Takacs EM, Sharpe RM, Stern DB. Nuclear, chloroplast, and mitochondrial transcript abundance along a maize leaf developmental gradient. Plant Mol Biol. 2008;66(1-2):33–46.
Article
PubMed
CAS
Google Scholar
Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, et al. The developmental dynamics of the maize leaf transcriptome. Nat Genet. 2010;42(12):1060–7.
Article
PubMed
CAS
Google Scholar
Majeran W, Friso G, Ponnala L, Connolly B, Huang M, Reidel E, et al. Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize. Plant Cell. 2010;22(11):3509–42.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sharpe RM, Mahajan A, Takacs EM, Stern DB, Cahoon AB. Developmental and cell type characterization of bundle sheath and mesophyll chloroplast transcript abundance in maize. Curr Genet. 2011;57(2):89–102.
Article
PubMed
CAS
Google Scholar
Chang YM, Liu WY, Shih AC, Shen MN, Lu CH, Lu MY, et al. Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis. Plant Physiol. 2012;160(1):165–77.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wang L, Czedik-Eysenberg A, Mertz R, Si Y, Tohge T, Nunes-Nesi A, et al. Comparative analyses of C4 and C3 photosynthesis in developing leaves of maize and rice. Nat Biotech. 2014;32:1158–65.
Article
CAS
Google Scholar
Pick TR, Bräutigam A, Schlüter U, Denton AK, Colmsee C, Scholz U, et al. Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation. Plant Cell. 2011;23(12):4208–20.
Article
PubMed
CAS
PubMed Central
Google Scholar
Silva EN, Ribeiro RV, Ferreira-Silva SL, Vieira SA, Ponte LFA, Silveira JAG. Coordinate changes in photosynthesis, sugar accumulation and antioxidative enzymes improve the performance of Jatropha curcas plants under drought stress. Biomass Bioenergy. 2012;45:270–9.
Article
CAS
Google Scholar
Ranjith SA, Meinzer FC, Perry MH, Thom M. Partitioning of carboxylase activity in nitrogen-stressed sugarcane and its relationship to bundle sheath leakiness to CO2, photosynthesis and carbon isotope discrimination. Austr J Plant Physiol. 1995;22(6):903–11.
Article
CAS
Google Scholar
Buchmann N, Brooks JR, Rapp KD, Ehleringer JR. Carbon isotope composition of C-4 grasses is influenced by light and water supply. Plant Cell Environ. 1996;19(4):392–402.
Article
CAS
Google Scholar
Saliendra NZ, Meinzer FC, Perry M, Thom M. Associations between partitioning of carboxylase activity and bundle sheath leakiness to CO2, carbon isotope discrimination, photosynthesis, and growth in sugarcane. J Exp Bot. 1996;47(300):907–14.
Article
CAS
Google Scholar
Schulze ED, Ellis R, Schulze W, Trimborn P. Diversity, metabolic types and delta C-13 carbon isotope ratios in the grass flora of Namibia in relation to growth form, precipitation and habitat conditions. Oecologia. 1996;106(3):352–69.
Article
Google Scholar
Meinzer FC, Zhu J. Nitrogen stress reduces the efficiency of the C4 CO2 concentrating system, and therefore quantum yield, in Saccharum (sugarcane) species. J Exp Bot. 1998;49(324):1227–34.
CAS
Google Scholar
Williams DG, Gempko V, Fravolini A, Leavitt SW, Wall GW, Kimball BA, et al. Carbon isotope discrimination by Sorghum bicolor under CO2 enrichment and drought. New Phytol. 2001;150(2):285–93.
Article
CAS
Google Scholar
Cernusak LA, Ubierna N, Winter K, Holtum JA, Marshall JD GDF. Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol. 2013;200:950–65.
Article
PubMed
CAS
Google Scholar
Kromdijk J, Griffiths H, Schepers HE. Can the progressive increase of C4 bundle sheath leakiness at low PFD be explained by incomplete suppression of photorespiration? Plant Cell Environ. 2010;33(11):1935–48.
Article
PubMed
CAS
Google Scholar
Kromdijk J, Schepers HE, Albanito F, Fitton N, Carroll F, Jones MB, et al. Bundle sheath leakiness and light limitation during C4 leaf and canopy CO2 uptake. Plant Physiol. 2008;148(4):2144–55.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ubierna N, Sun W, Kramer DM, Cousins AB. The efficiency of C4 photosynthesis under low light conditions in Zea mays, Miscanthus x giganteus and Flaveria bidentis. Plant Cell Environ. 2013;36(2):365–81.
Article
PubMed
CAS
Google Scholar
Ubierna N, Sun W, Cousins AB. The efficiency of C4 photosynthesis under low light conditions: assumptions and calculations with CO2 isotope discrimination. J Exp Bot. 2011;62(9):3119–34.
Article
PubMed
CAS
Google Scholar
Xu Z, Zhou G. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J Exp Bot. 2008;59(12):3317–25.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ocheltree TW, Nippert JB, Prasad PV. Changes in stomatal conductance along grass blades reflect changes in leaf structure. Plant Cell Environ. 2012;35(6):1040–9.
Article
PubMed
CAS
Google Scholar
Li HL, Zhao CJ, Huang WJ, Yang GJ. Non-uniform vertical nitrogen distribution within plant canopy and its estimation by remote sensing: A review. Field Crops Res. 2013;142:75–84.
Article
Google Scholar
Valluru R, Van den Ende W. Myo-inositol and beyond - Emerging networks under stress. Plant Sci. 2011;181(4):387–400.
Article
PubMed
CAS
Google Scholar
Perez-Rodriguez P, Riano-Pachon DM, Correa LGG, Rensing SA, Kersten B, Mueller-Roeber B. PInTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res. 2010;38:D822–7.
Article
PubMed
CAS
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ono M, Hiyama S, Higuchi Y, Kamada H, Nitasaka E, Koyama T, et al. Morphological changes in Ipomoea nil using chimeric repressors of Arabidopsis TCP3 and TCP5. Plant Biotechnol. 2012;29(5):457–63.
Article
CAS
Google Scholar
Tao Q, Guo DS, Wei BY, Zhang F, Pang CX, Jiang H, et al. The TIE1 transcriptional repressor links TCP transcription factors with TOPLESS/TOPLESS-RELATED corepressors and modulates leaf development in Arabidopsis. Plant Cell. 2013;25(2):421–37.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ikeda M, Ohme-Takagi M. TCPs, WUSs, and WINDs: families of transcription factors that regulate shoot meristem formation, stem cell maintenance, and somatic cell differentiation. Front Plant Sci. 2014;5:427.
Article
PubMed
PubMed Central
Google Scholar
Aggarwal P, Padmanabhan B, Bhat A, Sarvepalli K, Sadhale PP, Nath U. The TCP4 transcription factor of Arabidopsis blocks cell division in yeast at G1 - > S transition. Biochem Biophys Res Commun. 2011;410(2):276–81.
Article
PubMed
CAS
Google Scholar
Koyama T, Sato F, Ohme-Takagi M. A role of TCP1 in the longitudinal elongation of leaves in Arabidopsis. Biosci Biotechnol Biochem. 2010;74(10):2145–7.
Article
PubMed
CAS
Google Scholar
Koyama T, Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell. 2010;22(11):3574–88.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bischoff V, Nita S, Neumetzler L, Schindelasch D, Urbain A, Eshed R, et al. TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis. Plant Physiol. 2010;153(2):590–602.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gille S, de Souza A, Xiong GY, Benz M, Cheng K, Schultink A, et al. O-Acetylation of Arabidopsis hemicellulose xyloglucan requires AXY4 or AXY4L, proteins with a TBL and DUF231 domain. Plant Cell. 2011;23(11):4041–53.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gille S, Pauly M. O-acetylation of plant cell wall polysaccharides. Front Plant Sci. 2012;3:12.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nielsen JS, Moller BL. Biosynthesis of cyanogenic glucosides in Triglochin maritima and the involvement of cytochrome P450 enzymes. Arch Biochem Biophys. 1999;368(1):121–30.
Article
PubMed
CAS
Google Scholar
Nielsen JS, Moller BL. Cloning and expression of cytochrome P450 enzymes catalyzing the conversion of tyrosine to p-hydroxyphenylacetaldoxime in the biosynthesis of cyanogenic glucosides in Triglochin maritima. Plant Physiol. 2000;122(4):1311–21.
Article
PubMed
CAS
PubMed Central
Google Scholar
Burke JJ, Chen JP, Burow G, Mechref Y, Rosenow D, Payton P, et al. Leaf dhurrin content is a quantitative measure of the level of pre- and postflowering drought tolerance in Sorghum. Crop Sci. 2013;53(3):1056–65.
CAS
Google Scholar
Curto G, Dallavalle E, De Nicola GR, Lazzeri L. Evaluation of the activity of dhurrin and sorghum towards Meloidogyne incognita. Nematology. 2012;14:759–69.
Article
Google Scholar
Busk PK, Moller BL. Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants. Plant Physiol. 2002;129(3):1222–31.
Article
PubMed
CAS
PubMed Central
Google Scholar
Link M, Rausch T, Greiner S. In Arabidopsis thaliana, the invertase inhibitors AtC/VIF1 and 2 exhibit distinct target enzyme specificities and expression profiles. Febs Letters. 2004;573(1-3):105–9.
Article
PubMed
CAS
Google Scholar
Tamoi M, Tabuchi T, Demuratani M, Otori K, Tanabe N, Maruta T, et al. Point mutation of a plastidic invertase inhibits development of the photosynthetic apparatus and enhances nitrate assimilation in sugar-treated Arabidopsis seedlings. J Biol Chem. 2010;285(20):15399–407.
Article
PubMed
CAS
PubMed Central
Google Scholar
Carland F, Fujioka S, Nelson T. The sterol methyltransferases SMT1, SMT2, and SMT3 influence Arabidopsis development through nonbrassinosteroid products. Plant Physiol. 2010;153(2):741–56.
Article
PubMed
CAS
PubMed Central
Google Scholar
Giovane A, Servillo L, Balestrieri C, Raiola A, D’Avino R, Tamburrini M, et al. Pectin methylesterase inhibitor. Biochim Biophys Acta Proteins Proteomics. 2004;1696(2):245–52.
Article
CAS
Google Scholar
Davin LB, Lewis NG. Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiol. 2000;123(2):453–61.
Article
PubMed
CAS
PubMed Central
Google Scholar
Darnet S, Rahier A. Plant sterol biosynthesis: identification of two distinct families of sterol 4 alpha-methyl oxidases. Biochem J. 2004;378:889–98.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bloch KE. Sterol structure and membrane-function. Crit Rev Biochem. 1983;14(1):47–92.
Article
CAS
Google Scholar
Hartmann MA. Plant sterols and the membrane environment. Trends Plant Sci. 1998;3(5):170–5.
Article
Google Scholar
Chen ZX. A superfamily of proteins with novel cysteine-rich repeats. Plant Physiol. 2001;126(2):473–6.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liu ML, Li XR, Liu YB, Cao B. Regulation of flavanone 3-hydroxylase gene involved in the flavonoid biosynthesis pathway in response to UV-B radiation and drought stress in the desert plant, Reaumuria soongorica. Plant Physiol Biochem. 2013;73:161–7.
Article
PubMed
CAS
Google Scholar
Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001;126(2):485–93.
Article
PubMed
CAS
PubMed Central
Google Scholar
Matkovich SJ, Zhang Y, Van Booven DJ, Dorn GW. Deep mRNA sequencing for in vivo functional analysis of cardiac transcriptional regulators application to G alpha q. Circ Res. 2010;106(9):1459–67.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liu S, Lin L, Jiang P, Wang D, Xing Y. A comparison of RNA-Seq and high-density exon array for detecting differential gene expression between closely related species. Nucleic Acids Res. 2011;39(2):578–88.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8.
Article
PubMed
CAS
Google Scholar
Brautigam A, Weber APM. Do metabolite transport processes limit photosynthesis? Plant Physiol. 2011;155(1):43–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gowik U, Bräutigam A, Weber KL, Weber AP, Westhoff P. Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes does it take to make C4? Plant Cell. 2011;23(6):2087–105.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kausch AP, Owen TP, Zachwieja SJ, Flynn AR, Sheen J. Mesophyll-specific, light and metabolic regulation of the C(4)PPCZm1 promoter in transgenic maize. Plant Mol Biol. 2001;45(1):1–15.
Article
PubMed
CAS
Google Scholar
Langdale JA, Zelitch I, Miller E, Nelson T. Cell position and light influence C4 versus C3 patterns of photosynthetic gene-expression in maize. Embo J. 1988;7(12):3643–51.
PubMed
CAS
PubMed Central
Google Scholar
Wingler A, Walker RP, Chen ZH, Leegood RC. Phosphoenolpyruvate carboxykinase is involved in the decarboxylation of aspartate in the bundle sheath of maize. Plant Physiol. 1999;120(2):539–45.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sheen J. C4 gene expression. Annu Rev Plant Physiol Plant Mol Biol. 1999;50:187–217.
Article
PubMed
CAS
Google Scholar
Ueno Y, Imanari E, Emura J, Yoshizawa-Kumagaye K, Nakajima K, Inami K, et al. Immunological analysis of the phosphorylation state of maize C4-form phosphoenolpyruvate carboxylase with specific antibodies raised against a synthetic phosphorylated peptide. Plant J. 2000;21(1):17–26.
Article
PubMed
CAS
Google Scholar
Ponnala L, Wang YP, Sun Q, van Wijk KJ. Correlation of mRNA and protein abundance in the developing maize leaf. Plant J. 2014;78(3):424–40.
Article
PubMed
CAS
Google Scholar
Sheen JY, Bogorad L. Differential expression of C4 pathway genes in mesophyll and bundle sheath-cells of greening maize leaves. J Biol Chemis. 1987;262(24):11726–30.
CAS
Google Scholar
Langdale JA, Rothermel BA, Nelson T. Cellular-pattern of photosynthetic gene-expression in developing maize leaves. Genes Dev. 1988;2(1):106–15.
Article
PubMed
CAS
Google Scholar
Rius SP, Casati P, Iglesias AA, Gomez-Casati DF. Characterization of an Arabidopsis thaliana mutant lacking a cytosolic non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase. Plant Mol Biol. 2006;61(6):945–57.
Article
PubMed
CAS
Google Scholar
Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M. Trehalose metabolism in plants. Plant J. 2014;79(4):544–67.
Article
PubMed
CAS
Google Scholar
Yadav UP, Ivakov A, Feil R, Duan GY, Walther D, Giavalisco P, et al. The sucrosetrehalose 6-phosphate (Tre6P) nexus: specificity and mechanisms of sucrose signalling by Tre6P. J Exp Bot. 2014;65(4):1051–68.
Article
PubMed
CAS
PubMed Central
Google Scholar
Delorge I, Figueroa CM, Feil R, Lunn JE, Van Dijck P. Trehalose-6-phosphate synthase 1 is not the only active TPS in Arabidopsis thaliana. Biochem J. 2015;466:283–90.
Article
PubMed
CAS
Google Scholar
Loewus FA, Murthy PPN. Myo-inositol metabolism in plants. Plant Sci. 2000;150(1):1–19.
Article
CAS
Google Scholar
Gillaspy GE. The cellular language of myo-inositol signaling. New Phytologist. 2011;192(4):823–39.
Article
PubMed
CAS
Google Scholar
Stitt M, Gibon Y. Why measure enzyme activities in the era of systems biology? Trends Plant Sci. 2014;19(4):256–65.
Article
PubMed
CAS
Google Scholar
Cosgrove D. Growth of the plant cell wall. Nat Rev Mol Cell Biol. 2005;6(11):850–61.
Article
PubMed
CAS
Google Scholar
Sorek N, Sorek H, Kijac A, Szemenyei HJ, Bauer S, Hematy K, et al. The Arabidopsis COBRA protein facilitates cellulose crystallization at the plasma membrane. J Biol Chem. 2014;289(50):34911–20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ranathunge K, Schreiber L, Franke R. Suberin research in the genomics era-New interest for an old polymer. Plant Sci. 2011;180(3):399–413.
Article
PubMed
CAS
Google Scholar
Kosma DK, Murmu J, Razeq FM, Santos P, Bourgault R, Molina I, et al. AtMYB41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types. Plant J. 2014;80(2):216–29.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mertz RA, Brutnell TP. Bundle sheath suberization in grass leaves: multiple barriers to characterization. J Exp Bot. 2014;65(13):3371–80.
Article
PubMed
Google Scholar
Hattersley PW. DeltaC13 values of C4 types in grasses. Austr J Plant Physiol. 1982;9(2):139–54.
Article
CAS
Google Scholar
Hatch MD, Agostino A, Jenkins CLD. Measurement of the leakage of CO2 from bundle-sheath cells of leaves during C4 photosynthesis. Plant Physiol. 1995;108(1):173–81.
PubMed
CAS
PubMed Central
Google Scholar
Soler M, Serra O, Molinas M, Huguet G, Fluch S, Figueras M. A genomic approach to suberin biosynthesis and cork differentiation. Plant Physiol. 2007;144(1):419–31.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010;15(10):573–81.
Article
PubMed
CAS
Google Scholar
Zhong RQ, Ye ZH. Complexity of the transcriptional network controlling secondary wall biosynthesis. Plant Sci. 2014;229:193–207.
Article
PubMed
CAS
Google Scholar
Chai MF, Bellizzi M, Wan CX, Cui ZF, Li YB, Wang GL. The NAC transcription factor OsSWN1 regulates secondary cell wall development in Oryza sativa. J Plant Biol. 2015;58(1):44–51.
Article
CAS
Google Scholar
Ludwig Y, Berendzen KW, Xu CZ, Piepho HP, Hochholdinger F. Diversity of stability, localization, interaction and control of downstream gene activity in the maize Aux/IAA protein family. Plos One. 2014;9(9), e107346.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mockaitis K, Estelle M. Auxin receptors and plant development: A new signaling paradigm. In: Annual Review of Cell and Developmental Biology, vol. 24. Palo Alto: Annual Reviews; 2008. p. 55–80.
Google Scholar
Balcerowicz M, Ranjan A, Rupprecht L, Fiene G, Hoecker U. Auxin represses stomatal development in dark-grown seedlings via Aux/IAA proteins. Development. 2014;141(16):3165–76.
Article
PubMed
CAS
Google Scholar
Wang YJ, Deng DX, Bian YL, Lv YP, Xie Q. Genome-wide analysis of primary auxin-responsive Aux/IAA gene family in maize (Zea mays. L.). Mol Biol Rep. 2010;37(8):3991–4001.
Article
PubMed
CAS
Google Scholar
Huang CJ, Hu GJ, Li FF, Li YQ, Wu JX, Zhou XP. NbPHAN, a MYB transcriptional factor, regulates leaf development and affects drought tolerance in Nicotiana benthamiana. Physiol Plant. 2013;149(3):297–309.
PubMed
CAS
Google Scholar
Naz AA, Raman S, Martinez CC, Sinha NR, Schmitz G, Theres K. Trifoliate encodes an MYB transcription factor that modulates leaf and shoot architecture in tomato. Proc Natl Acad Sci U S A. 2013;110(6):2401–6.
Article
PubMed
CAS
PubMed Central
Google Scholar
Juarez MT, Twigg RW, Timmermans MCP. Specification of adaxial cell fate during maize leaf development. Development. 2004;131(18):4533–44.
Article
PubMed
CAS
Google Scholar
Liu T, Ohashi-Ito K, Bergmann DC. Orthologs of Arabidopsis thaliana stomatal bHLH genes and regulation of stomatal development in grasses. Development. 2009;136(13):2265–76.
Article
PubMed
CAS
Google Scholar
Li ZY, Li B, Dong AW. The Arabidopsis transcription factor AtTCP15 regulates endoreduplication by modulating expression of key cell-cycle genes. Mol Plant. 2012;5(1):270–80.
Article
PubMed
CAS
Google Scholar
Kieffer M, Master V, Waites R, Davies B. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. Plant J. 2011;68(1):147–58.
Article
PubMed
CAS
PubMed Central
Google Scholar
Steiner E, Efroni I, Gopalraj M, Saathoff K, Tseng TS, Kieffer M, et al. The Arabidopsis o-linked n-acetylglucosamine transferase SPINDLY interacts with class I TCPs to Facilitate cytokinin responses in leaves and flowers. Plant Cell. 2012;24(1):96–108.
Article
PubMed
CAS
PubMed Central
Google Scholar
Uberti-Manassero NG, Lucero LE, Viola IL, Vegetti AC, Gonzalez DH. The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins. J Exp Bot. 2012;63(2):809–23.
Article
PubMed
CAS
Google Scholar
Balazadeh S, Riano-Pachon DM, Mueller-Roeber B. Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol. 2008;10:63–75.
Article
PubMed
CAS
Google Scholar
Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, et al. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science. 2000;290(5499):2105–10.
Article
PubMed
CAS
Google Scholar
Xu XP, Chen CH, Fan BF, Chen ZX. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell. 2006;18(5):1310–26.
Article
PubMed
CAS
PubMed Central
Google Scholar
Fang YJ, You J, Xie KB, Xie WB, Xiong LZ. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics. 2008;280(6):547–63.
Article
PubMed
CAS
Google Scholar
Okamoto M, Vidmar JJ, Glass ADM. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: Responses to nitrate provision. Plant Cell Physiol. 2003;44(3):304–17.
Article
PubMed
CAS
Google Scholar
Robinson SA, Slade AP, Fox GG, Phillips R, Ratcliffe RG, Stewart GR. The role of glutamate-dehydrogenase in plant nitrogen-metabolism. Plant Physiol. 1991;95(2):509–16.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tamura W, Hidaka Y, Tabuchi M, Kojima S, Hayakawa T, Sato T, et al. Reverse genetics approach to characterize a function of NADH-glutamate synthase1 in rice plants. Amino Acids. 2010;39(4):1003–12.
Article
PubMed
CAS
Google Scholar
Prinsi B, Espen L. Mineral nitrogen sources differently affect root glutamine synthetase isoforms and amino acid balance among organs in maize. BMC Plant Biol. 2015;15:13.
Article
CAS
Google Scholar
Sechley KA, Yamaya T, Oaks A. Compartmentation of nitrogen assimilation in higher-plants. Int Rev Cytol. 1992;134:85–163.
Article
CAS
Google Scholar
Feild TS, Lee DW, Holbrook NM. Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiol. 2001;127(2):566–74.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gepstein S. Leaf senescence - not just a ‘wear and tear’ phenomenon. Genome Biol. 2004;5:212.
Article
PubMed
PubMed Central
Google Scholar
Guo YF, Gan SS. Leaf senescence: Signals, execution, and regulation. Curr Top Dev Biol. 2005;71:83–112.
Article
PubMed
CAS
Google Scholar
Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, et al. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotech J. 2008;6(5):486–503.
Article
CAS
Google Scholar
Vangysel A, Vanmontagu M, Inze D. A negatively light-regulated gene from Arabidopsis thaliana encodes a protein showing high similarity to blue copper-binding proteins. Gene. 1993;136(1-2):79–85.
Article
CAS
Google Scholar
Stone SL, Hauksdottir H, Troy A, Herschleb J, Kraft E, Callis J. Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol. 2005;137(1):13–30.
Article
PubMed
CAS
PubMed Central
Google Scholar
Miao Y, Zentgraf U. A HECT E3 ubiquitin ligase negatively regulates Arabidopsis leaf senescence through degradation of the transcription factor WRKY53. Plant J. 2010;63(2):179–88.
Article
PubMed
CAS
Google Scholar
Berghold J, Breuker K, Oberhuber M, Hortensteiner S, Krautler B. Chlorophyll breakdown in spinach: on the structure of five nonfluorescent chlorophyll catabolites. Photosynth Res. 2002;74(2):109–19.
Article
PubMed
CAS
Google Scholar
Hortensteiner S. Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci. 2009;14(3):155–62.
Article
PubMed
CAS
Google Scholar
Park SY, Yu JW, Park JS, Li J, Yoo SC, Lee NY, et al. The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell. 2007;19(5):1649–64.
Article
PubMed
CAS
PubMed Central
Google Scholar
Neill SJ, Burnett EC, Desikan R, Hancock JT. Cloning of a wilt-responsive cDNA from an Arabidopsis thaliana suspension culture cDNA library that encodes a putative 9-cis-epoxy-carotenoid dioxygenase. J Exp Bot. 1998;49(328):1893–4.
CAS
Google Scholar
Barry C, Fox E, Yen H, Lee S, Ying T, Grierson D, et al. Analysis of the ethylene response in the epinastic mutant of tomato. Plant Physiol. 2001;127(1):58–66.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kim J, Chang C, Tucker ML. To grow old: regulatory role of ethylene and jasmonic acid in senescence. Front Plant Sci. 2015;6:20.
PubMed
PubMed Central
Google Scholar
Picton S, Barton SL, Bouzayen M, Hamilton AJ, Grierson D. Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene-forming enzyme transgene. Plant J. 1993;3(3):469–81.
Article
CAS
Google Scholar
Grbic V, Bleecker AB. Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant J. 1995;8(4):595–602.
Article
CAS
Google Scholar
John I, Drake R, Farrell A, Cooper W, Lee P, Horton P, et al. Delayed leaf senescence in ethylene-deficient ACC-oxidase antisense tomato plants - Molecular and physiological analysis. Plant J. 1995;7(3):483–90.
Article
CAS
Google Scholar
Yang TF, Gonzalez-Carranza ZH, Maunders MJ, Roberts JA. Ethylene and the regulation of senescence processes in transgenic Nicotiana sylvestris plants. Ann Bot. 2008;101(2):301–10.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hochheiser H, Shneiderman B. Dynamic query tools for time series data sets, Timebox widgets for interactive exploration. Inf Vis. 2004;3(1):1–18.
Article
Google Scholar
Sade N, Shatil-Cohen A, Attia Z, Maurel C, Boursiac Y, Kelly G, et al. The role of plasma membrane aquaporins in regulating the bundle sheath-mesophyll continuum and leaf hydraulics. Plant Physiol. 2014;166(3):1609–20.
Article
PubMed
CAS
PubMed Central
Google Scholar
Franken P, Schrell S, Peterson PA, Saedler H, Wienand U. Molecular analysis of protein domain function encoded by the myb-homologous maize gene-C1, gene-ZM-1 and gene-ZM-38. Plant J. 1994;6(1):21–30.
Article
PubMed
CAS
Google Scholar
Glover BJ, Perez-Rodriguez M, Martin C. Development of several epidermal cell types can be specified by the same MYB-related plant transcription factor. Development. 1998;125(17):3497–508.
PubMed
CAS
Google Scholar
Lee MM, Schiefelbein J. WEREWOLF, a MYB-related protein in arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell. 1999;99(5):473–83.
Article
PubMed
CAS
Google Scholar
Vaucheret H. Plant ARGONAUTES. Trends Plant Sci. 2008;13(7):350–8.
Article
PubMed
CAS
Google Scholar
Ferreira TH, Gentile A, Vilela RD, Costa GGL, Dias LI, Endres L, et al. microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.). Plos One. 2012;7(10):14.
Article
CAS
Google Scholar
Gentile A, Ferreira TH, Mattos RS, Dias LI, Hoshino AA, Carneiro MS, et al. Effects of drought on the microtranscriptome of field-grown sugarcane plants. Planta. 2013;237(3):783–98.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bottino MC, Rosario S, Grativol C, Thiebaut F, Rojas CA, Farrineli L, et al. High-throughput sequencing of small rna transcriptome reveals salt stress regulated microRNAs in Sugarcane. Plos One. 2013;8(3):12.
Google Scholar
Nonomura KI, Morohoshi A, Nakano M, Eiguchi M, Miyao A, Hirochika H, et al. A germ cell-specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice. Plant Cell. 2007;19(8):2583–94.
Article
PubMed
CAS
PubMed Central
Google Scholar
Olmedo-Monfil V, Duran-Figueroa N, Arteaga-Vazquez M, Demesa-Arevalo E, Autran D, Grimanelli D, et al. Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature. 2010;464:628–32.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M, Benning C. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J. 1998;17(1):170–80.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lynn K, Fernandez A, Aida M, Sedbrook J, Tasaka M, Masson P, et al. The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development. 1999;126(3):469–81.
PubMed
CAS
Google Scholar
Moussian B, Schoof H, Haecker A, Jurgens G, Laux T. Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis. EMBO J. 1998;17(6):1799–809.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yang KZ, Jiang M, Le J. A new loss-of-function allele 28y reveals a role of ARGONAUTE1 in limiting asymmetric division of stomatal lineage ground cell. J Integr Plant Biol. 2014;56(6):539–49.
Article
PubMed
CAS
Google Scholar
Oliver C, Santos JL, Pradillo M. On the role of some ARGONAUTE proteins in meiosis and DNA repair in Arabidopsis thaliana. Front Plant Sci. 2014;5:177.
Article
PubMed
PubMed Central
Google Scholar
Nagasaki H, Itoh JI, Hayashi K, Hibara KI, Satoh-Nagasawa N, Nosaka M, et al. The small interfering RNA production pathway is required for shoot meristern initiation in rice. Proc Natl Acad Sci U S A. 2007;104(37):14867–71.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kalve S, De Vos D, Beemster GTS. Leaf development: a cellular perspective. Front Plant Sci. 2014;5:362.
Article
PubMed
PubMed Central
Google Scholar
Jia XL, Li MY, Jiang Q, Xu ZS, Wang F, Xiong AS. High-throughput sequencing of small RNAs and anatomical characteristics associated with leaf development in celery. Sci Rep. 2015; 5: doi:10.1038/srep11093.
Lakhotia N, Joshi G, Bhardwaj AR, Katiyar-Agarwal S, Agarwal M, Jagannath A, et al. Identification and characterization of miRNAome in root, stem, leaf and tuber developmental stages of potato (Solanum tuberosum L.) by high-throughput sequencing. BMC Plant Biol. 2014;14.
van Dillewijn C. Botany of Sugarcane. Waltahm, Massachusetts: Chronica Botanica; 1952.
Google Scholar
Gibon Y, Blaesing OE, Hannemann J, Carillo P, Hohne M, Hendriks JHM, et al. A robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: Comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell. 2004;16(12):3304–25.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ashton ARB, J.N. Furbank, A.T. Jenkins, C.L.D. Hatch, M.D. Enzymes of C4 photosynthesis. In: Methods in Plant Biochemistry. Edited by Lea P, vol. 3. London, UK: Academic Press; 1990: 39-71.
Lilley RM, Walker DA. Improved spectrophotometric assay for ribulose-bis-phosphate carboxylase. Biochim Biophys Acta. 1974;358(1):226–9.
Article
PubMed
CAS
Google Scholar
Carmo-Silva AE, Salvucci ME. The regulatory properties of Rubisco activase differ among species and affect photosynthetic induction during light transitions. Plant Physiol. 2013;161(4):1645–55.
Article
PubMed
CAS
PubMed Central
Google Scholar
Berkelman T, Stenstedt T: 2-D eletrophoresis-using immobilized pH gradients. Principles and Methods.: Amersham Biosciences; 1998.
Farquhar GD. On the nature of carbon isotope discrimination in C4 species. Austr J Plant Physiol. 1983;10(2):205–26.
Article
CAS
Google Scholar
Cross JM, von Korff M, Altmann T, Bartzetko L, Sulpice R, Gibon Y, et al. Variation of enzyme activities and metabolite levels in 24 Arabidopsis accessions growing in carbon-limited conditions. Plant Physiol. 2006;142(4):1574–88.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff MJB, et al. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009;37(6), e45.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
PubMed
CAS
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotech. 2011;29:644–52.
Article
CAS
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–512.
Article
PubMed
CAS
Google Scholar
Smith-Unna D, Boursnell C, Kelly S, Hibberd J. Transrate v1.0.0alpha. 2014. 10.5281/zenodo.12286.
Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, et al. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009;457:551–6.
Article
PubMed
CAS
Google Scholar
Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genornes. Bioinformatics. 2007;23(9):1061–7.
Article
PubMed
CAS
Google Scholar
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8(10):785–6.
Article
PubMed
CAS
Google Scholar
Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol. 2001;305(3):567–80.
Article
PubMed
CAS
Google Scholar
Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35(9):3100–8.
Article
PubMed
CAS
PubMed Central
Google Scholar
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:W182–5.
Article
PubMed
PubMed Central
Google Scholar
Goodstein DM, Shu SQ, Howson R, Neupane R, Hayes RD, Fazo J, et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012;40(D1):D1178–86.
Article
PubMed
CAS
PubMed Central
Google Scholar
Roberts A, Pachter L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods. 2013;10:71–3.
Article
PubMed
CAS
Google Scholar
Anders S, McCarthy DJ, Chen YS, Okoniewski M, Smyth GK, Huber W, et al. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nature Protoc. 2013;8(9):1765–86.
Article
CAS
Google Scholar
Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010; 11: doi:10.1186/gb-2010-11-3-r25.