Liang C, Wang J, Zhao J, Tian J, Liao H. Control of phosphate homeostasis through gene regulation in crops. Curr Opin Plant Biol. 2014;21:59–66.
Article
PubMed
CAS
Google Scholar
Fusconi A. Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation? Ann Bot. 2014;113:19–33.
Article
PubMed
CAS
PubMed Central
Google Scholar
Péret B, Clément M, Nussaume L, Desnos T. Root developmental adaptation to phosphate starvation: better safe than sorry. Trends Plant Sci. 2011;16:442–50.
Article
PubMed
Google Scholar
Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS. Responses of root architecture development to low phosphorus availability: a review. Ann Bot. 2013;112:391–408.
Article
PubMed
CAS
PubMed Central
Google Scholar
Doerner P. Phosphate starvation signaling: a threesome controls systemic P(i) homeostasis. Curr Opin Plant Biol. 2008;11:536–40.
Article
PubMed
CAS
Google Scholar
Batjes NH. A world data set for derived soil properties by FAO-UNESCO soil unit for global modelling. Soil Use Manage. 1997;13:9–16.
Article
Google Scholar
Downing JA, Watson SB, McCauley E. Predicting cyanobacterial dominance in lakes. Can J Fish Aquat Sci. 2001;58:1905–8.
Article
Google Scholar
Hu B, Zhu C, Li F, Tang J, Wang Y, Lin A, et al. LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice. Plant Physiol. 2011;156:1101–15.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lambers H, Finnegan PM, Laliberte E, Pearse SJ, Ryan MH, Shane MW, et al. Phosphorus nutrition of proteaceae in severely phosphorus-impoverished soils: Are there lessons to be learned for future crops? Plant Physiol. 2011;156:1058–66.
Article
PubMed
CAS
PubMed Central
Google Scholar
Vance CP, Uhde-Stone C, Allan DL. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 2003;157:423–47.
Article
CAS
Google Scholar
Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot. 2006;98:693–713.
Article
PubMed
PubMed Central
Google Scholar
Yang SY, Paszkowski U. Phosphate import at the arbuscule: just a nutrient? Mol Plant-Microbe Interact. 2011;24:1296–9.
Article
PubMed
CAS
Google Scholar
Balzergue C, Puech-Pagès V, Bécard G, Rochange SF. The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J Exp Bot. 2011;62:1049–60.
Article
PubMed
CAS
PubMed Central
Google Scholar
Camehl I, Drzewiecki C, Vadassery J, Shahollari B, Sherameti I, Forzani C, et al. The OXI1 kinase pathway mediates Piriformospora indica-induced growth promotion in Arabidopsis. PLoS Pathog. 2011;7, e1002051.
Article
PubMed
CAS
PubMed Central
Google Scholar
Jogawat A, Saha S, Bakshi M, Dayaman V, Kumar M, Dua M, et al. Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signal Behav. 2013;8, e26891.
Article
PubMed Central
Google Scholar
Ye W, Shen CH, Lin Y, Chen PJ, Xu X, Oelmüller R, et al. Growth promotion-related miRNAs in Oncidium orchid roots colonized by the endophytic fungus Piriformospora indica. PLoS One. 2014;9, e84920.
Article
PubMed
PubMed Central
Google Scholar
Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmüller R. The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J Biol Chem. 2005;280:26241–7.
Article
PubMed
CAS
Google Scholar
Kumar M, Yadav V, Kumar H, Sharma R, Singh A, Tuteja N, et al. Piriformospora indica enhances plant growth by transferring phosphate. Plant Signal Behav. 2011;6:723–5.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yadav V, Kumar M, Deep DK, Kumar H, Sharma R, Tripathi T, et al. A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. J Biol Chem. 2010;285:26532–44.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pedersen BP, Kumar H, Waight AB, Risenmay AJ, Roe-Zurz Z, Chau BH, et al. Crystal structure of a eukaryotic phosphate transporter. Nature. 2013;496:533–6.
Article
PubMed
CAS
PubMed Central
Google Scholar
Venus Y, Oelmüller R. Arabidopsis ROP1 and ROP6 influence germination time, root morphology, the formation of F-actin bundles, and symbiotic fungal interactions. Mol Plant. 2013;6:872–86.
Article
PubMed
CAS
Google Scholar
Vadassery J, Ranf S, Drzewiecki C, Mithofer A, Mazars C, Scheel D, et al. A cell wall extract from Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. Plant J. 2009;59:193–206.
Article
PubMed
CAS
Google Scholar
Barazani O, Benderoth M, Groten K, Kuhlemeier C, Baldwin IT. Piriformospora indica and Sebacina vermifera increase growth performance at the expense of herbivore resistance in Nicotiana ttenuate. Oecologia. 2005;146:234–43.
Article
PubMed
Google Scholar
Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A. 2005;102:13386–91.
Article
PubMed
CAS
PubMed Central
Google Scholar
Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, et al. Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol. 2008;180:501–10.
Article
PubMed
CAS
Google Scholar
Pedrotti L, Mueller MJ, Waller F. Piriformospora indica root colonization triggers local and systemic root responses and inhibits secondary colonization of distal roots. PLoS One. 2013;8, e69352.
Article
PubMed
CAS
PubMed Central
Google Scholar
Fakhro A, Andrade-Linares DR, von Bargen S, Bandte M, Büttner C, Grosch R, et al. Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza. 2010;20:191–200.
Article
PubMed
Google Scholar
Das A, Kamal S, Shakil NA, Sherameti I, Oelmüller R, Dua M, et al. The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant Coleus forskohlii. Plant Signal Behav. 2012;7:103–12.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sherameti I, Tripathi S, Varma A, Oelmüller R. The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Mol Plant-Microbe Interact. 2008;21:799–807.
Article
PubMed
CAS
Google Scholar
Khatabi B, Schäfer P. Ethylene in mutualistic symbioses. Plant Signal Behav. 2012;7:1634–8.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chi Y, Yang Y, Zhou Y, Zhou J, Fan B, Yu JQ, et al. Protein-protein interactions in the regulation of WRKY transcription factors. Mol Plant. 2013;6:287–300.
Article
PubMed
CAS
Google Scholar
Bakshi M, Oelmüller R. WRKY transcription factors: Jack of many trades in plants. Plant Signal Behav. 2014;9, e27700.
Article
PubMed
CAS
PubMed Central
Google Scholar
Llorca CM, Potschin M, Zentgraf U. bZIPs and WRKYs: two large transcription factor families executing two different functional strategies. Front Plant Sci. 2014;5:169.
Article
PubMed
PubMed Central
Google Scholar
Chen YF, Li LQ, Xu Q, Kong YH, Wang H, Wu WH. The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. Plant Cell. 2009;21:3554–66.
Article
PubMed
CAS
PubMed Central
Google Scholar
Devaiah BN, Karthikeyan AS, Raghothama KG. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol. 2007;143:1789–90.
Article
PubMed
CAS
PubMed Central
Google Scholar
Devaiah BN, Raghothama KG. Transcriptional regulation of Pi starvation responses by WRKY75. Plant Signal Behav. 2007;2:424–5.
Article
PubMed
PubMed Central
Google Scholar
Ma Z, Baskin TI, Brown KM, Lynch JP. Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant Physiol. 2003;131:1381–90.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ishii T, Shrestha YH, Matsumoto I, Kadoya K. Effect of ethylene on the growth of vesicular-arbuscular mycorrhizal fungi and on the mvcorrhizal formation of trifoliate orange roots. J Jpn Soc Hortic Sci. 1996;65:525–9.
Article
CAS
Google Scholar
Hamburger D, Rezzonico E, Petétot JMC, Somerville C, Poirier Y. Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. Plant Cell. 2002;14:889–902.
Article
PubMed
CAS
PubMed Central
Google Scholar
Krogan NT, Yin X, Ckurshumova W, Berleth T. Distinct subclades of Aux/IAA genes are direct targets of ARF5/MP transcriptional regulation. New Phytol. 2014;204:474–83.
Article
PubMed
CAS
Google Scholar
Guilfoyle TJ, Hagen G. Getting a grasp on domain III/IV responsible for Auxin Response Factor-IAA protein interactions. Plant Sci. 2012;190:82–8.
Article
PubMed
CAS
Google Scholar
Benschop JJ, Millenaar FF, Smeets ME, van Zanten M, Voesenek LA, Peeters AJ. Abscisic acid antagonizes ethylene-induced hyponastic growth in Arabidopsis. Plant Physiol. 2007;143:1013–23.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chen CN, Chu CC, Zentella R, Pan SM, Ho THD. AtHVA22 gene family in Arabidopsis: phylogenetic relationship, ABA and stress regulation, and tissue-specific expression. Plant Mol Biol. 2002;49:631–42.
Article
Google Scholar
Yang F, Song Y, Yang H, Liu Z, Zhu G, Yang Y. An auxin-responsive endogenous peptide regulates root development in Arabidopsis. J Integr Plant Biol. 2014;56:635–47.
Article
PubMed
CAS
Google Scholar
Löhr B, Streitner C, Steffen A, Lange T, Staiger D. A glycine-rich RNA-binding protein affects gibberellin biosynthesis in Arabidopsis. Mol Biol Rep. 2014;41:439–45.
Article
PubMed
Google Scholar
Hsieh LC, Lin SI, Shih AC, Chen JW, Lin WY, Tseng CY, et al. Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol. 2009;151:2120–32.
Article
PubMed
PubMed Central
Google Scholar
Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, et al. Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol. 2009;150:1541–55.
Article
PubMed
PubMed Central
Google Scholar
Song JB, Huang SQ, Dalmay T, Yang ZM. Regulation of leaf morphology by microRNA394 and its target leaf curling responsiveness. Plant Cell Physiol. 2012;53:1283–94.
Article
PubMed
CAS
Google Scholar
Sorin C, Marie D, Aurélie C, Thomas B, Linnan M, Christine L‐B, et al. A miR169 isoform regulates specific NF‐YA targets and root architecture in Arabidopsis. New Phytol. 2014;202:1197–11.
Article
PubMed
CAS
Google Scholar
He H, Liang G, Li Y, Wang F, Yu D. Two young microRNAs originating from target duplication mediate nitrogen starvation adaptation via regulation of glucosinolate synthesis in Arabidopsis thaliana. Plant Physiol. 2014;164:853–65.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science. 2012;335:207–11.
Article
PubMed
CAS
Google Scholar
Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S. Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol. 2004;134:1555–73.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kiba T, Naitou T, Koizumi N, Yamashino T, Sakakibara H, Mizuno T. Combinatorial microarray analysis revealing Arabidopsis genes implicated in cytokinin responses through the His- > Asp Phosphorelay circuitry. Plant Cell Physiol. 2005;466:339–55.
Article
Google Scholar
Cai Y, Zhuang X, Gao C, Wang X, Jiang L. The Arabidopsis endosomal sorting complex required for transport III regulates internal vesicle formation of the prevacuolar compartment and is required for plant development. Plant Physiol. 2014;165:1328–43.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tam PP, Barrette-Ng IH, Simon DM, Tam MW, Ang AL, Muench DG. The Puf family of RNA-binding proteins in plants: phylogeny, structural modeling, activity and subcellular localization. BMC Plant Biol. 2010;10:44.
Article
PubMed
PubMed Central
Google Scholar
Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, et al. Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta. 2007;226:839–51.
Article
PubMed
CAS
Google Scholar
Müller R, Morant M, Jarmer H, Nilsson L, Nielsen TH. Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant Physiol. 2007;143:156–71.
Article
PubMed
PubMed Central
Google Scholar
Robatzek S, Somssich IE. Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev. 2002;16:1139–49.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sukumar P, Legué V, Vayssières A, Martin F, Tuskan GA, Kalluri UC. Involvement of auxin pathways in modulating root architecture during beneficial plant-microorganism interactions. Plant Cell Environ. 2013;36:909–19.
Article
PubMed
CAS
Google Scholar
Mukherjee K, Ane J. Germinating spore exudates from arbuscular mycorrhizal fungi: molecular and developmental responses in plants and their regulation by ethylene. Mol Plant-Microbe Interact. 2011;24:260–70.
Article
PubMed
CAS
Google Scholar
López-Arredondo DL, Leyva-Gonzalez MA, Gonzalez-Morales SI, López-Bucio J, Herrera-Estrella L. Phosphate nutrition: Improving low-phosphate tolerance in crops. Ann Rev Plant Biol. 2014;65:95–123.
Article
Google Scholar
Dong S, Tian Z, Chen PJ, Senthil KR, Shen CH, Cai D, et al. The maturation zone is an important target of Piriformospora indica in Chinese cabbage roots. J Exp Bot. 2013;64:4529–40.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lee YC, Johnson JM, Chien CT, Sun C, Cai D, Lou B, et al. Growth promotion of Chinese cabbage and Arabidopsis by Piriformospora indica is not stimulated by mycelium-synthesized auxin. Mol Plant-Microbe Interact. 2011;24:421–31.
Article
PubMed
CAS
Google Scholar
Glassop D, Godwin RM, Smith SE, Smith FW. Rice phosphate transporters associated with phosphate uptake in rice roots colonized with arbuscular mycorrhizal fungi. Botany. 2007;85:644–51.
CAS
Google Scholar
Harrison MJ, Dewbre GR, Liu J. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell. 2002;14:2413–29.
Article
PubMed
CAS
PubMed Central
Google Scholar
Shahollari B, Varma A, Oelmüller R. Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains. J Plant Physiol. 2005;162:945–58.
Article
PubMed
CAS
Google Scholar
Rausch C, Bucher M. Molecular mechanisms of phosphate transport in plants. Planta. 2002;216:23–37.
Article
PubMed
CAS
Google Scholar
Schachtman DP, Reid RJ, Ayling SM. Phosphorus uptake by plants: From soil to cell. Plant Physiol. 1998;116:447–53.
Article
PubMed
CAS
PubMed Central
Google Scholar
Javot H, Pumplin N, Harrison MJ. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ. 2007;30:310–22.
Article
PubMed
CAS
Google Scholar
Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, et al. Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J. 2009;57:0798–809.
Article
CAS
Google Scholar
Lynch J, Brown KM. Ethylene and plant responses to nutritional stress. Physiol Plant. 1997;100:613–9.
Article
CAS
Google Scholar
Camehl I, Sherameti I, Venus Y, Bethke G, Varma A, Lee J, et al. Ethylene signalling and ethylene‐targeted transcription factors are required to balance beneficial and nonbeneficial traits in the symbiosis between the endophytic fungus Piriformospora indica and Arabidopsis thaliana. New Phytol. 2010;185:1062–73.
Article
PubMed
CAS
Google Scholar
Peškan-Berghöfer T, Shahollari B, Giong PH, Hehl S, Markert C, Blanke V, et al. Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant-microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiol Plantarum. 2004;122:465–77.
Article
Google Scholar
Oelmüller R, Peškan-Berghöfer T, Shahollari B, Trebicka A, Sherameti I, Varma A. MATH domain proteins represent a novel protein family in Arabidopsis thaliana, and at least one member is modified in roots during the course of a plant-microbe interaction. Physiol Plantarum. 2005;124:152–66.
Article
Google Scholar
Vadassery J, Ritter C, Venus Y, Camehl I, Varma A, Shahollari B, et al. The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Mol Plant-Microbe Interact. 2008;21:1371–83.
Article
PubMed
CAS
Google Scholar
Spartz AK, Lee SH, Wenger JP, Gonzalez N, Itoh H, Inzé D, et al. The SAUR19 subfamily of small auxin-up RNA genes promotes cell expansion. Plant J. 2012;70:978–90.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wang SK, Zhang SN, Sun CD, Xu YX, Chen Y, Yu CL, et al. Auxin response factor (OsARF12), a novel regulator for phosphate homeostasis in rice (Oryza sativa). New Phytol. 2014;201:91–103.
Article
PubMed
CAS
Google Scholar
Qi YH, Wang SK, Shen CJ, Zhang SN, Chen Y, Xu YX, et al. OsARF12, a transcription activator on auxin response gene, regulates root elongation and affects iron accumulation in rice (Oryza sativa). New Phytol. 2012;193:109–20.
Article
PubMed
CAS
Google Scholar
Bruex A, Kainkaryam RM, Wieckowski Y, Kang YH, Bernhardt C, Xia Y, et al. A gene regulatory network for root epidermis cell differentiation in Arabidopsis. PLoS Genet. 2012;8, e1002446.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hur YS, Um JH, Kim S, Kim K, Park HJ, Lim JS, et al. Arabidopsis thaliana homeobox 12 (ATHB12), a homeodomain-leucine zipper protein, regulates leaf growth by promoting cell expansion and endoreduplication. New Phytol. 2014;205:316–28.
Article
PubMed
Google Scholar
Bernal AJ, Yoo CM, Mutwil M, Jensen JK, Hou G, Blaukopf C, et al. Functional analysis of the cellulose synthase-like genes CSLD1, CSLD2, and CSLD4 in tip-growing Arabidopsis cells. Plant Physiol. 2008;148:1238–53.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yang DL, Yao J, Mei CS, Tong XH, Zeng LJ, Li Q, et al. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc Natl Acad Sci U S A. 2012;109:E1192–200.
Article
PubMed
CAS
PubMed Central
Google Scholar
Simon SA, Meyers BC, Sherrier DJ. MicroRNAs in the rhizobia legume symbiosis. Plant Physiol. 2009;151:1002–8.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gu M, Xu K, Chen A, Zhu Y, Tang G, Xu G. Expression analysis suggests potential roles of microRNAs for phosphate and arbuscular mycorrhizal signaling in Solanum lycopersicum. Physiol Plantarum. 2010;138:226–37.
Article
CAS
Google Scholar
Gu M, Liu W, Meng Q, Zhang W, Chen A, Sun S, et al. Identification of microRNAs in six solanaceous plants and their potential link with phosphate and mycorrhizal signaling. J Integr Plant Biol. 2014;56:1164–78.
Article
PubMed
CAS
Google Scholar
Hajdarpaši A, Ruggenthaler P. Analysis of miRNA expression under stress in Arabidopsis thaliana. Bosn J Basic Med Sci. 2012;12:169–76.
Google Scholar
Sunkar R, Yong-Fang L, Guru J. Functions of microRNAs in plant stress responses. Trends Plant Sci. 2012;17:196–203.
Article
PubMed
CAS
Google Scholar
Khan GA, Declerck M, Sorin C, Hartmann C, Crespi M, Lelandais BC. MicroRNAs as regulators of root development and architecture. Plant Mol Biol. 2011;77:47–58.
Article
PubMed
CAS
Google Scholar
Li C, Zhang B. MicroRNAs in Control of Plant Development. J Cell Physiol. 2016;231:303–13.
Article
PubMed
CAS
Google Scholar
Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15:473–97.
Article
CAS
Google Scholar
Johnson JM, Sherameti I, Ludwig A, Nongbri PL, Sun C, Lou B, et al. Protocols for Arabidopsis thaliana and Piriformospora indica co-cultivation - A model system to study plant beneficial traits. J Endocyt Cell Res. 2011;101–13.
Sun C, Shao Y, Vahabi K, Lu J, Bhattacharya S, Dong S, et al. The beneficial fungus Piriformospora indica protects Arabidopsis from Verticillium dahliae infection by downregulation plant defense responses. BMC Plant Biol. 2014;14:268.
Article
PubMed
PubMed Central
Google Scholar
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29, e45.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bolstad BM, Rafael AI, Magnus A, Terence PS. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19:185–93.
Article
PubMed
CAS
Google Scholar
Berardini TZ, Mundodi S, Reiser L, Huala E, Garcia-Hernandez M, Zhang P, et al. Functional annotation of the Arabidopsis genome using controlled vocabularies. Plant Physiol. 2004;135:745–55.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bhattacharya S, Baldwin IT. The post-pollination ethylene burst and the continuation of floral advertisement are harbingers of non-random mate selection in Nicotiana attenuata. Plant J. 2012;71:587–601.
Article
PubMed
CAS
Google Scholar