Meihls LN, Kaur H, Jander G. Natural variation in maize defense against insect herbivores. Cold Spring Harb Sym. 2012;77:269–83.
CAS
Google Scholar
Malvar RA, Cartea ME, Revilla P, Ordás A, Alvarez A, Mansilla JP. Sources of resistance to pink stem borer and European corn borer in maize. Maydica. 1993;38:313–9.
Google Scholar
Avantaggiato G, Quaranta F, Desiderio E, Visconti A. Fumonisin contamination of maize hybrids visibly damaged by Sesamia. J Sci Food Agric. 2002;83:13–8.
Google Scholar
Visconti A, Marasas WFO, Miller JD, Riley R. Mycotoxins of growing interest: Fumonisins. In: Book Mycotoxins of growing interest: Fumonisins. 1999. p. 1–22.
Google Scholar
Cordero A, Malvar RA, Butrón A, Revilla P, Velasco P, Ordás A. Population dynamics and life-cycle of corn borers in South Atlantic European Coast. Maydica. 1998;43:5–12.
Google Scholar
Velasco P, Revilla P, Monetti L, Butrón A, Ordás A, Malvar RA. Corn borers (Lepidoptera: Noctuidae; Crambidae) northwestern Spain: population dinamics and distribution. Maydica. 2007;52:195–203.
Google Scholar
Meissle M, Romeis J, Bigler F. Bt maize and integrated pest management - a European perspective. Pest Manag Sci. 2011;67:1049–58.
CAS
PubMed
Google Scholar
Speiser B, Tamm L. Regulation of plant protection in organic farming. In: Ehlers R-U, editor. Regulation of Biological Control Agents. Kiel, Germany: Springer; 2011. p. 113–25.
Google Scholar
Campagne P, Kruger M, Pasquet R, Le Ru B, Van den Berg J. Dominant inheritance of field-evolved resistance to Bt corn in Busseola fusca. PLoS One. 2013;8:e69675.
PubMed Central
CAS
PubMed
Google Scholar
Tabashnik BE, Brévault T, Carrière Y. Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol. 2013;31:510–21.
CAS
PubMed
Google Scholar
González-Cabrera J, García M, Hernández-Crespo P, Farinós GP, Ortego F, Castañera P. Resistance to Bt maize in Mythimna unipuncta (Lepidoptera: Noctuidae) is mediated by alteration in Cry1Ab protein activation. Insect Biochem Mol Biol. 2013;43:635–43.
PubMed
Google Scholar
Gould F. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu Rev Entomol. 1998;43:701–26.
CAS
PubMed
Google Scholar
Butrón A, Malvar R, Velasco P, Vales M, Ordás A. Combining abilities for maize stem antibiosis, yield loss, and yield under infestation and non infestation with pink stem borer. Crop Sci. 1999;39:691–6.
Google Scholar
Cartea ME, Malvar RA, Butrón A, Vales MI, Ordás A. Inheritance of antibiosis to Sesamia nonagrioides (Lepidoptera: Noctuidae) in maize. J Econ Entomol. 1999;92:994–8.
Google Scholar
Papst C, Bohn M, Utz HF, Melchinger AE, Klein D, Eder J. QTL mapping for European corn borer resistance (Ostrinia nubilalis Hb.), agronomic and forage quality traits of testcross progenies in early- maturing European maize (Zea mays L.) germplasm. Theor Appl Genet. 2004;108:1545–54.
CAS
PubMed
Google Scholar
Schön CC, Lee M, Melchinger AE, Guthrie WD, Woodman WL. Mapping and characterization of quantitative trait loci affecting resistancie against second-generation European corn borer in maize with the aid of RFLPs. Heredity. 1993;70:648–59.
Google Scholar
Cardinal AJ, Lee M, Sharopova N, Woodman WL, Long MJ. Genetic mapping and analysis of quantitative trait loci for resistance to stalk tunneling by European corn borer in maize. Crop Sci. 2001;41:835–45.
CAS
Google Scholar
Ordás B, Malvar RA, Santiago R, Sandoya G, Romay MC, Butrón A. Mapping of QTL for resistance to the Mediterranean corn borer attack using the intermated B73 × Mo17 (IBM) population in maize. Theor Appl Genet. 2009;119:1451–9.
PubMed
Google Scholar
Klenke J, Russel W, Guthrie W. Recurrent selection for resistance to European corn borer in a corn synthetic and correlated effects on agronomic traits. Crop Sci. 1986;26:864–8.
Google Scholar
Bosque-Pérez N, Kling J, Odubiyi S. Recent advances in the development of sources of resistance to pink stalk borer and African sugarcane borer. In: Insect resistant maize: Recent advances and utilization Proc of an International Symposium. 1997. p. 234–40.
Google Scholar
Sandoya G, Butrón A, Alvarez A, Ordás A, Malvar RA. Direct response of a maize synthetic to recurrent selection for resistance to stem borers. Crop Sci. 2008;48:113–8.
Google Scholar
Butrón A, Romay MC, Peña-Asin J, Alvarez A, Malvar RA. Genetic relationship between maize resistance to corn borer attack and yield. Crop Sci. 2012;52:1176–80.
Google Scholar
Ordás B, Butrón A, Alvarez A, Revilla P, Malvar R. Comparison of two methods of reciprocal recurrent selection in maize (Zea mays L.). Theor Appl Genet. 2012;124:1183–91.
PubMed
Google Scholar
Malvar RA, Butrón A, Revilla P, Ordás A. Resistance to the pink stem borer, Sesamia nonagrioides, in maize. Recent Res Devel Plant Sci. 2004;2:1–32.
Google Scholar
Cartea ME, Malvar RA, Vales I, Butrón A, Ordás A. Inheritance of resistance to ear damage caused by Sesamia nonagrioides (Lepidoptera: Noctuidae) in maize. J Econ Entomol. 2001;94:277–83.
CAS
PubMed
Google Scholar
Hudon M, Chiang MS. Evaluation of resistance of maize germplasm to the univoltine European corn borer Ostrinia nubilalis (Hübner) and relationship with maize maturity in Quebec. Maydica. 1991;36:69–74.
Google Scholar
Guthrie W, Russell W. Breeding methodologies and genetic basis of resistance in maize to the European corn borer. In: International Symposium on Methodologies for Developing Host Plant Resistance to Maize Insects Mexico, DF (Mexico) 9–14 Mar 1987. 1989.
Google Scholar
Krakowsky MD, Brinkman MJ, Woodman WL, Lee M. Genetic components of resistance to stalk tunneling by the European corn borer in maize. Crop Sci. 2002;42:1309–15.
Google Scholar
Krakowsky MD, Lee M, Holland JB. Genotypic correlation and multivariate QTL analyses for cell wall components and resistance to stalk tunneling by the European corn borer in maize. Crop Sci. 2007;47:485–8.
Google Scholar
Krakowsky MD, Lee M, Woodman WL, Long MJ, Sharopova N. QTL mapping of resistance to stalk tunneling by the European corn borer in RILs of maize population B73 × De811. Crop Sci. 2004;44:274–82.
CAS
Google Scholar
Orsini E, Krchov L, Uphaus J, Melchinger A. Mapping of QTL for resistance to first and second generation of European corn borer using an integrated SNP and SSR linkage map. Euphytica. 2012;183:197–206.
CAS
Google Scholar
Ordás B, Malvar RA, Santiago R, Butrón A. QTL mapping for Mediterranean corn borer resistance in European flint germplasm using recombinant inbred lines. BMC Genomics. 2010;11:1–10.
Google Scholar
Bohn M, Khairallah MM, González-de-León D, Hoisington DA, Utz HF, Deutsch JA, et al. QTL mapping in tropical maize: I. Genomic regions affecting leaf feeding resistance to sugarcane borer and other traits. Crop Sci. 1996;36:1352–61.
Google Scholar
Groh S, González-de-León D, Khairallah MM, Jiang C, Bergvinson D, Bohn M, et al. QTL mapping in tropical maize III. Genomic regions for resistance to Diatraea spp and associated traits in two RIL populations. Crop Sci. 1998;1998:1062–72.
Google Scholar
Bohn M, Khairallah M, Jiang C, González-de-León D, Hoisington D, Utz H, et al. QTL mapping in tropical maize: II. Comparison of genomic regions for resistance to Diatraea spp. Crop Sci. 1997;37:1892–902.
CAS
Google Scholar
Weiss LA, Arking DE, Daly MJ, Chakravarti A, Brune CW, West K, et al. A genome-wide linkage and association scan reveals novel loci for autism. Nature. 2009;461:802–8.
PubMed Central
CAS
PubMed
Google Scholar
Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314:1461–3.
CAS
PubMed
Google Scholar
Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445:881–5.
CAS
PubMed
Google Scholar
Barendse W, Reverter A, Bunch RJ, Harrison BE, Barris W, Thomas MB. A validated whole-genome association study of efficient food conversion in cattle. Genetics. 2007;176:1893–905.
PubMed Central
CAS
PubMed
Google Scholar
Kijas JW, Townley D, Dalrymple BP, Heaton MP, Maddox JF, McGrath A, et al. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PLoS One. 2009;4:e4668.
PubMed Central
PubMed
Google Scholar
Bolormaa S, Hayes B, Savin K, Hawken R, Barendse W, Arthur P, et al. Genome-wide association studies for feedlot and growth traits in cattle. J Anim Sci. 2011;89:1684–97.
CAS
PubMed
Google Scholar
Fan B, Onteru SK, Du Z-Q, Garrick DJ, Stalder KJ, Rothschild MF. Genome-wide association study identifies loci for body composition and structural soundness traits in pigs. PLoS One. 2011;6:e14726.
PubMed Central
CAS
PubMed
Google Scholar
Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, et al. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet. 2011;43:159–62.
CAS
PubMed
Google Scholar
Neumann K, Kobiljski B, Denčić S, Varshney R, Börner A. Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed. 2011;27:37–58.
Google Scholar
Zhu C, Gore M, Buckler ES, Yu J. Status and prospects of association mapping in plants. Plant Genome. 2008;1:5–20.
CAS
Google Scholar
Peiffer JA, Flint-Garcia SA, De Leon N, McMullen MD, Kaeppler SM, Buckler ES. The genetic architecture of maize stalk strength. PLoS One. 2013;8:e67066.
PubMed Central
CAS
PubMed
Google Scholar
Oraguzie NC, Rikkerink EH, Gardiner SE, Silva H. Association mapping in plants. New York: Springer-Verlag GmbH; 2007.
Google Scholar
Romay MC, Millard MJ, Glaubitz JC, Peiffer J, Swarts K, Casstevens TM, et al. Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol. 2013;14:1–18.
Google Scholar
Flint-Garcia SA, Thuillet A-C, Yu J, Pressoir G, Romero SM, Mitchell SE, et al. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J. 2005;44:1054–64.
CAS
PubMed
Google Scholar
Liu K, Goodman M, Muse S, Smith JS, Buckler ES, Doebley J. Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics. 2003;165:2117–28.
PubMed Central
CAS
PubMed
Google Scholar
Cook JP, McMullen MD, Holland JB, Tian F, Bradbury P, Ross-Ibarra J, et al. Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiol. 2012;158:824–34.
PubMed Central
CAS
PubMed
Google Scholar
Olukolu BA, Negeri A, Dhawan R, Venkata B, Sharma P, Garg A, et al. A connected set of genes associated with programmed cell death implicated in controlling the hypersensitive response in maize. Genetics. 2013;193:609–20.
PubMed Central
CAS
PubMed
Google Scholar
Zila CT, Samayoa LF, Santiago R, Butrón A, Holland JB. A genome-wide association study reveals genes associated with fusarium ear rot resistance in a maize core diversity panel. G3-Genes Genomes Genet. 2013;3:2095–104.
Google Scholar
Atwell S, Huang YS, Vilhjálmsson BJ, Willems G, Horton M, Li Y, et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature. 2010;465:627–31.
PubMed Central
CAS
PubMed
Google Scholar
Chan EK, Rowe HC, Kliebenstein DJ. Understanding the evolution of defense metabolites in Arabidopsis thaliana using genome-wide association mapping. Genetics. 2010;185:991–1007.
PubMed Central
CAS
PubMed
Google Scholar
Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, Charcosset A, et al. A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One. 2011;6:e28334.
PubMed Central
CAS
PubMed
Google Scholar
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6:e19379.
PubMed Central
CAS
PubMed
Google Scholar
Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, et al. TASSEL-GBS: A High Capacity Genotyping by Sequencing Analysis Pipeline. PLoS One. 2014;9:e90346.
PubMed Central
PubMed
Google Scholar
Steel RG, Torrie JH. Principles and procedures of statistics. New York, Toronto, London: McGraw-Hill Book Company; 1960.
Google Scholar
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326:1112–5.
CAS
PubMed
Google Scholar
Butrón A, Malvar RA, Velasco P, Cartea ME, Ordás A. Combining abilities and reciprocal effects for maize ear resistance to pink stem borer. Maydica. 1998;43:117–22.
Google Scholar
Velasco P, Revilla P, Butrón A, Ordás B, Ordás A, Malvar RA. Ear damage of sweet corn inbreds and their hybrids under multiple corn borer infestation. Crop Sci. 2002;42:724–9.
Google Scholar
Velasco P, Malvar RA, Butrón A, Revilla P, Ordás A. Ear feeding resistance of sweet corn inbreds to pink stem borer. J Am Soc Hortic Sci. 1999;124:268–72.
Google Scholar
Bohn M, Schulz B, Kreps R, Klein D, Melchinger AE. QTL mapping for resistance against the European corn borer (Ostrinia nubilalis H.) in early maturing European dent germplasm. Theor Appl Genet. 2000;101:907–17.
CAS
Google Scholar
Zhang Z, Ersoz E, Lai C-Q, Todhunter RJ, Tiwari HK, Gore MA, et al. Mixed linear model approach adapted for genome-wide association studies. Nat Genet. 2010;42:355–60.
PubMed Central
CAS
PubMed
Google Scholar
Samayoa LF, Butrón A, Malvar RA. QTL mapping for maize resistance and yield under infestation with Sesamia nonagrioides. Mol Breeding. 2014;34:1331–44.
Google Scholar
Harper LC, Schaeffer ML, Thistle J, Gardiner J, Andorf C, Campbell D, et al. The MaizeGDB Genome Browser tutorial: one example of database outreach to biologists via video. Database. 2011;2011:1–7.
Google Scholar
Allan RK, Ratajczak T. Versatile TPR domains accommodate different modes of target protein recognition and function. Cell Stress Chaperones. 2011;16:353–67.
PubMed Central
CAS
PubMed
Google Scholar
Blatch GL, Lässle M. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays. 1999;21:932–9.
CAS
PubMed
Google Scholar
Pogorelko GV, Mokryakova M, Fursova OV, Abdeeva I, Piruzian ES, Bruskin SA. Characterization of three Arabidopsis thaliana immunophilin genes involved in the plant defense response against P. syringae. Gene. 2014;538:12–22.
CAS
PubMed
Google Scholar
Hellmann HA, Smeekens S. Sugar sensing and signaling in plants. Front Plant Sci. 2014;5:113.
PubMed Central
PubMed
Google Scholar
Granot D, David-Schwartz R, Kelly G. Hexose kinases and their role in sugar-sensing and plant development. Front Plant Sci. 2013;4:1–17.
Google Scholar
Morkunas I, Ratajczak L. The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiol Plant. 2014;8:409–14.
Google Scholar
Lee U, Rioflorido I, Hong SW, Larkindale J, Waters ER, Vierling E. The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development. Plant J. 2007;49:115–27.
CAS
PubMed
Google Scholar
Zhong R, Richardson EA, Ye Z-H. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell. 2007;19:2776–92.
PubMed Central
CAS
PubMed
Google Scholar
Zhong R, Lee C, Zhou J, McCarthy RL, Ye Z-H. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell. 2008;20:2763–82.
PubMed Central
CAS
PubMed
Google Scholar
Liu Y. Investigation of a KNAT7-BLH-OFP transcription factor complex involved in regulation of secondary cell wall biosynthesis in Arabidopsis thaliana. In: MSc Thesis. Vancouver, Canada: University of British Columbia, Botany; 2010.
Google Scholar
Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell. 2005;17:2993–3006.
PubMed Central
CAS
PubMed
Google Scholar
Barros-Rios J, Malvar RA, Jung H-JG, Santiago R. Cell wall composition as a maize defense mechanism against corn borers. Phytochemistry. 2011;72:365–71.
CAS
PubMed
Google Scholar
Ryan CA. The systemin signaling pathway: differential activation of plant defensive genes. BBA-Protein Struct M. 2000;1477:112–21.
CAS
Google Scholar
Meijer HJ, Munnik T. Phospholipid-based signaling in plants. Annu Rev Plant Biol. 2003;54:265–306.
CAS
PubMed
Google Scholar
Zhu-Salman K, Bi J-L, Liu T-X. Molecular strategies of plant defense and insect counter-defense. Insect Sci. 2005;12:3–15.
Google Scholar
Afzal AJ, Wood AJ, Lightfoot DA. Plant receptor-like serine threonine kinases: Roles in signaling and plant defense. Mol Plant-Microbe Interact. 2008;21:507–17.
CAS
PubMed
Google Scholar
Nürnberger T, Kemmerling B. Receptor protein kinases–pattern recognition receptors in plant immunity. Trends Plant Sci. 2006;11:519–22.
PubMed
Google Scholar
Duan Y, Ge C, Liu S, Wang J, Zhou M. A two-component histidine kinase Shk1 controls stress response, sclerotial formation and fungicide resistance in Sclerotinia sclerotiorum. Mol Plant Pathol. 2013;14:708–18.
CAS
PubMed
Google Scholar
G-i A, Kost C, Boland W. Herbivore-induced, indirect plant defences. BBA-Mol Cell Biol L. 2005;1734:91–111.
Google Scholar
Engelsdorf T, Hamann T. An update on receptor-like kinase involvement in the maintenance of plant cell wall integrity. Ann Bot. 2014;114:1339–47.
PubMed
Google Scholar
Szczegielniak J, Borkiewicz L, Szurmak B, Lewandowska-Gnatowska E, Statkiewicz M, Klimecka M, et al. Maize calcium-dependent protein kinase (ZmCPK11): local and systemic response to wounding, regulation by touch and components of jasmonate signaling. Physiol Plant. 2012;146:1–14.
CAS
PubMed
Google Scholar
Yang D-H, Hettenhausen C, Baldwin IT, Wu J. Silencing Nicotiana attenuata calcium-dependent protein kinases, CDPK4 and CDPK5, strongly up-regulates wound-and herbivory-induced jasmonic acid accumulations. Plant Physiol. 2012;159:1591–607.
PubMed Central
CAS
PubMed
Google Scholar
Szczegielniak J, Klimecka M, Liwosz A, Ciesielski A, Kaczanowski S, Dobrowolska G, et al. A wound-responsive and phospholipid-regulated maize calcium-dependent protein kinase. Plant Physiol. 2005;139:1970–83.
PubMed Central
CAS
PubMed
Google Scholar
Ma F, Lu R, Liu H, Shi B, Zhang J, Tan M, et al. Nitric oxide-activated calcium/calmodulin-dependent protein kinase regulates the abscisic acid-induced antioxidant defence in maize. J Exp Bot. 2012;63:4835–47.
PubMed Central
CAS
PubMed
Google Scholar
Staiger CJ, Gibbon BC, Kovar DR, Zonia LE. Profilin and actin-depolymerizing factor: modulators of actin organization in plants. Trends Plant Sci. 1997;2:275–81.
Google Scholar
Tian M, Chaudhry F, Ruzicka DR, Meagher RB, Staiger CJ, Day B. Arabidopsis actin-depolymerizing factor AtADF4 mediates defense signal transduction triggered by the Pseudomonas syringae effector AvrPphB. Plant Physiol. 2009;150:815–24.
PubMed Central
CAS
PubMed
Google Scholar
Henty-Ridilla JL, Li J, Day B, Staiger CJ. Actin depolymerizing factor4 regulates actin dynamics during innate immune signaling in Arabidopsis. Plant Cell. 2014;26:340–52.
PubMed Central
CAS
PubMed
Google Scholar
Porter K, Shimono M, Tian M, Day B. Arabidopsis Actin-Depolymerizing Factor-4 links pathogen perception, defense activation and transcription to cytoskeletal dynamics. PLoS Pathog. 2012;8:e1003006.
PubMed Central
CAS
PubMed
Google Scholar
Wu Y, Zhou JM. Receptor-Like Kinases in Plant Innate Immunity. J Integr Plant Biol. 2013;55:1271–86.
CAS
PubMed
Google Scholar
Jones DA, Jones J. The role of leucine-rich repeat proteins in plant defences. Adv Bot Res. 1997;24:90–168.
Google Scholar
McCann MC, Carpita NC. Designing the deconstruction of plant cell walls. Curr Opin Plant Biol. 2008;11:314–20.
CAS
PubMed
Google Scholar
Zhong R, Demura T, Ye Z-H. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell. 2006;18:3158–70.
PubMed Central
CAS
PubMed
Google Scholar
Nogueira FT, Schlögl PS, Camargo SR, Fernandez JH. SsNAC23, a member of the NAC domain protein family, is associated with cold, herbivory and water stress in sugarcane. Plant Sci. 2005;169:93–106.
CAS
Google Scholar
Abe M, Abe K, Kuroda M, Arai S. Corn kernel cysteine proteinase inhibitor as a novel cystatin superfamily member of plant origin. Eur J Biochem. 1992;209:933–7.
CAS
PubMed
Google Scholar
McMullen MD, Frey M, Degenhardt J. Genetics and biochemistry of insect resistance in maize. In: Bennetzen JL, Hake SC, editors. Handbook of maize: Its biology. NY, USA: Springer; 2009. p. 271–89.
Google Scholar
Ussuf K, Laxmi N, Mitra R. Proteinase inhibitors: plant-derived genes of insecticidal protein for developing insect-resistant transgenic plants. Curr Sci India. 2001;80:847–53.
CAS
Google Scholar
Fabrick J, Behnke C, Czapla T, Bala K, Rao A, Kramer K, et al. Effects of a potato cysteine proteinase inhibitor on midgut proteolytic enzyme activity and growth of the southern corn rootworm, Diabrotica undecimpunctata howardi (Coleoptera: Chrysomelidae). Insect Biochem Mol Biol. 2002;32:405–15.
CAS
PubMed
Google Scholar
Zhang H, Hedhili S, Montiel G, Zhang Y, Chatel G, Pré M, et al. The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus. Plant J. 2011;67:61–71.
CAS
PubMed
Google Scholar
Niu Y, Figueroa P. Characterization of JAZ-interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis. J Exp Bot. 2011;62:2143–54.
PubMed Central
CAS
PubMed
Google Scholar
Sasaki-Sekimoto Y, Jikumaru Y, Obayashi T, Saito H, Masuda S, Kamiya Y, et al. Basic Helix-Loop-Helix transcription factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 are negative regulators of jasmonate responses in Arabidopsis. Plant Physiol. 2013;163:291–304.
PubMed Central
CAS
PubMed
Google Scholar
Qi T, Huang H, Wu D, Yan J, Qi Y, Song S, et al. Arabidopsis DELLA and JAZ Proteins Bind the WD-Repeat/bHLH/MYB Complex to Modulate Gibberellin and Jasmonate Signaling Synergy. Plant Cell. 2014;26:1118–33.
CAS
PubMed
Google Scholar
Song S, Qi T, Fan M, Zhang X, Gao H, Huang H, et al. The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development. PLoS Genet. 2013;9:e1003653.
PubMed Central
CAS
PubMed
Google Scholar
Xia H, Yandeau-Nelson M, Thompson DB, Guiltinan MJ. Deficiency of maize starch-branching enzyme i results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination. BMC Plant Biol. 2011;11:1–13.
Google Scholar
Dunwell JM, Gibbings JG, Mahmood T, Saqlan Naqvi S. Germin and germin-like proteins: evolution, structure, and function. Crit Rev Plant Sci. 2008;27:342–75.
CAS
Google Scholar
Davidson RM, Reeves PA, Manosalva PM, Leach JE. Germins: A diverse protein family important for crop improvement. Plant Sci. 2009;177:499–510.
CAS
Google Scholar
Breen J, Bellgard M. Germin-like proteins (GLPs) in cereal genomes: gene clustering and dynamic roles in plant defence. Funct Integr Genomics. 2010;10:463–76.
CAS
PubMed
Google Scholar
Armstrong JS, Abdel-Mageed H, Fokar M, Allen R, Adamczyk Jr JJ. Dietary effects of cotton tissue expressing germin like protein on beet armyworm (Lepidoptera: Noctuidae) growth, survival and pupation. Fla Entomol. 2013;96:693–700.
CAS
Google Scholar
Ryser U, Schorderet M, Guyot R, Keller B. A new structural element containing glycine-rich proteins and rhamnogalacturonan I in the protoxylem of seed plants. J Cell Sci. 2004;117:1179–90.
CAS
PubMed
Google Scholar
Ringli C, Keller B, Ryser U. Glycine-rich proteins as structural components of plant cell walls. Cell Mol Life Sci. 2001;58:1430–41.
CAS
PubMed
Google Scholar
Mangeon A, Junqueira RM, Sachetto-Martins G. Functional diversity of the plant glycine-rich proteins superfamily. Plant Signal Behav. 2010;5:99–104.
PubMed Central
CAS
PubMed
Google Scholar
Showalter AM. Structure and function of plant cell wall proteins. Plant Cell. 1993;5:9.
PubMed Central
CAS
PubMed
Google Scholar
Sturm A. A wound-inducible glycine-rich protein from Daucus carota with homology to single-stranded nucleic acid-binding proteins. Plant Physiol. 1992;99:1689–92.
PubMed Central
CAS
PubMed
Google Scholar
Bohlmann H, Broekaert W. The role of thionins in plant protection. Crit Rev Plant Sci. 1994;13:1–16.
CAS
Google Scholar
De Coninck B, Cammue B, Thevissen K. Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides. Fungal Biol Rev. 2013;26:109–20.
Google Scholar
Shiau Y-S, Horng S-B, Chen C-S, Huang P-T, Lin C, Hsueh Y-C, et al. Structural analysis of the unique insecticidal activity of novel mungbean defensin VrD1 reveals possibility of homoplasy evolution between plant defensins and scorpion neurotoxins. J Mol Recognit. 2006;19:441–50.
CAS
PubMed
Google Scholar
Bohlmann H, Apel K. Thionins. Annu Rev Plant Biol. 1991;42:227–40.
CAS
Google Scholar
Kessler A, Baldwin IT. Plant responses to insect herbivory: The emerging molecular analysis. Annu Rev Plant Biol. 2002;53:299–328.
CAS
PubMed
Google Scholar
Hershko A, Ciechanover A. The ubiquitin system for protein degradation. Annu Rev Biochem. 1992;61:761–807.
CAS
PubMed
Google Scholar
Zeng L-R, Vega-Sánchez ME, Zhu T, Wang G-L. Ubiquitination-mediated protein degradation and modification: an emerging theme in plant-microbe interactions. Cell Res. 2006;16:413–26.
CAS
PubMed
Google Scholar
Kelley DR, Estelle M. Ubiquitin-mediated control of plant hormone signaling. Plant Physiol. 2012;160:47–55.
PubMed Central
CAS
PubMed
Google Scholar
Santner A, Estelle M. The ubiquitin-proteasome system regulates plant hormone signaling. Plant J. 2010;61:1029–40.
PubMed Central
CAS
PubMed
Google Scholar
Igarashi D, Tsuda K, Katagiri F. The peptide growth factor, phytosulfokine, attenuates pattern-triggered immunity. Plant J. 2012;71:194–204.
CAS
PubMed
Google Scholar
Rodriguez PA. Analysis of AtPSKR1, an LRR receptor protein kinase, and other PSK-signalling components in plant defence responses. In: PhD Thesis. Tübingen, Germany: University of Tübingen, Mathematics and Natural Sciences; 2011.
Google Scholar
Angelini R, Tisi A, Rea G, Chen MM, Botta M, Federico R, et al. Involvement of polyamine oxidase in wound healing. Plant Physiol. 2008;146:162–77.
PubMed Central
CAS
PubMed
Google Scholar
Wimalasekera R, Tebartz F, Scherer GF. Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci. 2011;181:593–603.
CAS
PubMed
Google Scholar
Rizhsky L, Hallak-Herr E, Van Breusegem F, Rachmilevitch S, Barr JE, Rodermel S, et al. Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J. 2002;32:329–42.
CAS
PubMed
Google Scholar
Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, et al. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J. 1997;16:4806–16.
PubMed Central
CAS
PubMed
Google Scholar
Kaur R, Gupta AK, Taggar GK. Role of catalase, H2O2 and phenolics in resistance of pigeonpea towards Helicoverpa armigera (Hubner). Acta Physiol Plant. 2014;36:1513–27.
CAS
Google Scholar
Bajsa J, Pan Z, Duke SO. Serine/threonine protein phosphatases: Multi-purpose enzymes in control of defense mechanisms. Plant Signal Behav. 2011;6:1921.
PubMed Central
CAS
PubMed
Google Scholar
Vyroubalová Š, Václavíková K, Turečková V, Novák O, Šmehilová M, Hluska T, et al. Characterization of new maize genes putatively involved in cytokinin metabolism and their expression during osmotic stress in relation to cytokinin levels. Plant Physiol. 2009;151:433–47.
PubMed Central
PubMed
Google Scholar
Smigocki A, Neal Jr J, McCanna I, Douglass L. Cytokinin-mediated insect resistance in Nicotiana plants transformed with the ipt gene. Plant Mol Biol. 1993;23:325–35.
CAS
PubMed
Google Scholar
Giron D, Frago E, Glevarec G, Pieterse CM, Dicke M. Cytokinins as key regulators in plant-microbe-insect interactions: connecting plant growth and defence. Funct Ecol. 2013;27:599–609.
Google Scholar
De Los CG, Gianola D, Allison DB. Predicting genetic predisposition in humans: the promise of whole-genome markers. Nat Rev Genet. 2010;11:880–6.
Google Scholar
Flint-Garcia SA, Darrah LL, McMullen MD, Hibbard BE. Phenotypic versus marker-assisted selection for stalk strength and second-generation European corn borer resistance in maize. Theor Appl Genet. 2003;107:1331–6.
CAS
PubMed
Google Scholar
Eizaguirre M, Albajes R. Diapause induction in the stem corn borer Sesamia nonagrioides (Lepidoptera, Noctuidae). Entomol Gen. 1992;17:277–83.
Google Scholar
SAS Institute Inc. SAS 9.3 Guide to software updates. Cary, NC, USA, SAS Institute Inc. 2011; 314 p
Holland JB, Nyquist WE, Cervantes-Martínez CT. Estimated an interpreting heritability for plant breeding: An update. In: Janick J, editor. Plant Breeding Reviews, vol. Volume 22. Hoboken, New Jersey, USA: Jonh Wiley & Sons; 2003. p. 9–112.
Google Scholar
Holland JB. Estimating genotypic correlations and their standard errors using multivariate restricted maximum likelihood estimation with SAS Proc MIXED. Crop Sci. 2006;46:642–56.
Google Scholar
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–5.
CAS
PubMed
Google Scholar
Yu J, Pressoir G, Briggs WH, Vroh I, Yamasaki I, Doebley JF, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 2006;38:203–8.
CAS
PubMed
Google Scholar
Valdar W, Holmes CC, Mott R, Flint J. Mapping in structured populations by resample model averaging. Genetics. 2009;182:1263–77.
PubMed Central
PubMed
Google Scholar
Panagiotou OA, Ioannidis JP. What should the genome-wide significance threshold be? Empirical replication of borderline genetic associations. Int J Epidemiol. 2012;41:273–86.
PubMed
Google Scholar
R Core Team. R: A languange and environment for statistical computing. In: Book R: A languange and environment for statistical computing (Editor ed.^eds.). Vienna, Austria: City: R Foundation for Statistical Computing; 2013.
Google Scholar