Zhao ZZ, Sun X: Research status and control strategy of potato late blight. China Plant Prot. 2009, 8: 12-14.
Google Scholar
Sun ZK, Niu C, Yang SS: Research of potato late blight. Life Sci Res. 2006, S1: 71-75.
Google Scholar
Wang BL: Induced Expression Profiling of Potato Genes Associated withQuantitative Resistance to Late Blight and Preliminary Exploring of QuantitativeResistance Mechanism. Wuhan: Huazhong Agricultural University; 2005.
Google Scholar
Fry WE, Goodwin SB: Resurgence of the Irish potato famine fungus. Bioscienece. 1997, 47: 363-371. 10.2307/1313151.
Article
Google Scholar
Vleeshouwers VG, Van Dooijeweert W, Govers F, Kamoun S, Colon LT: The hypersensitive response is associated with host and nonhost resistance to Phytophthora infestans. Planta. 2000, 210 (6): 853-864. 10.1007/s004250050690.
Article
CAS
PubMed
Google Scholar
Halim VA, Altmann S, Ellinger D, Eschen-Lippold L, Miersch O, Scheel D, Rosahl S: PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid. Plant J. 2009, 57: 230-242. 10.1111/j.1365-313X.2008.03688.x.
Article
CAS
PubMed
Google Scholar
Halim VA, Hunger A, Macioszek V, Landgraf P, Nürnberger T, Scheel D, Rosahl S: The oligopeptide elicitor Pep-13 induces salicylic acid-dependent and -independent defense reactions in potato. Physiol Mol Plant Pathol. 2004, 64 (6): 311-318. 10.1016/j.pmpp.2004.10.003.
Article
CAS
Google Scholar
Yamamizo C, Kuchimura K, Kobayashi A, Katou S, Kawakita K, Jones JDG, Noriyuki D, Hirofumi Y: Rewiring mitogen-activated protein kinase cascade by positive feedback confers potato blight resistance. Plant Physiol. 2006, 140: 681-692. 10.1104/pp.105.074906.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shibata Y, Kawakita K, Takemoto D: Age-related resistance of Nicotiana benthamiana against hemibiotrophic pathogen Phytophthora infestans requires both ethylene and salicylic acid-mediated signaling pathways. Mol Plant Microbe Interact. 2010, 23 (9): 1130-1142. 10.1094/MPMI-23-9-1130.
Article
CAS
PubMed
Google Scholar
Shi X, Tian Z, Liu J, van der Vossen EA, Xie C: A potato pathogenesis-related protein gene, StPRp27, contributes to race-nonspecific resistance against Phytophthora infestans. Mol Biol Rep. 2012, 39 (2): 1909-1916. 10.1007/s11033-011-0937-5.
Article
CAS
PubMed
Google Scholar
Cohen Y, Gisi U, Niderman T: Local and systemic protection against Phytop hthor a infestans induced in potato and tomato plants by jasmonic acid and jasmonic methyl ester. Phytopathology. 1993, 83 (10): 1054-1062. 10.1094/Phyto-83-1054.
Article
CAS
Google Scholar
Parada LF, Tabin CJ, Shih C, Weinberg RA: Human EJ bladder carcinoma oncogene is homologue of Harvey carcoma virus Ras gene. Nature. 1982, 291 (5866): 474-478. 10.1038/297474a0.
Article
Google Scholar
Hall A: Rho GTPases and the actin cytoskeleton. Science. 1998, 279: 509-514. 10.1126/science.279.5350.509.
Article
CAS
PubMed
Google Scholar
Chant J, Stowers L: GTPase cascades choreographing cellular behavior: movement, morphogenesis and more. Cell. 1995, 81: 1-4. 10.1016/0092-8674(95)90363-1.
Article
CAS
PubMed
Google Scholar
Takai Y, Sasaki T, Matozaki T: Small GTP-binding proteins. Physiol Rev. 2001, 81 (1): 153-208.
CAS
PubMed
Google Scholar
Settleman J: Rac’n Rho: the music that shapes a developing embryo. Dev Cell. 2001, 1 (3): 321-331. 10.1016/S1534-5807(01)00053-3.
Article
CAS
PubMed
Google Scholar
Hall A, Nobes CD: Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos Trans R Soc Lond B Biol Sci. 2000, 355: 965-970. 10.1098/rstb.2000.0632.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen X, Friml J: Rho-GTPase-regulated vesicle trafficking in plant cell polarity. Biochem Soc Trans. 2014, 42 (1): 212-218. 10.1042/BST20130269.
Article
CAS
PubMed
Google Scholar
Zheng ZL, Yang ZB: The Rop GTPase: an emerging signaling switch in plants. Plant Mol Biol. 2000, 44: 1-9. 10.1023/A:1006402628948.
Article
CAS
PubMed
Google Scholar
Yang ZB: Small GTPase: versatile signaling switches in plants. Plant Cell. 2002, 14 (Suppl): S375-S388.
PubMed Central
CAS
PubMed
Google Scholar
Vernoud V, Horton AC, Yang ZB, Nielsen E: Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol. 2003, 131 (3): 1191-1208. 10.1104/pp.013052.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gu Y, Wang Z, Yang Z: ROP/RAC GTPase: an old new master regulator for plant signaling. Curr Opin Plant Biol. 2004, 7: 527-536. 10.1016/j.pbi.2004.07.006.
Article
CAS
PubMed
Google Scholar
Xu J, Scheres B: Cell polarity: ROPing the ends together. Curr Opin Plant Biol. 2005, 8 (6): 613-618. 10.1016/j.pbi.2005.09.003.
Article
CAS
PubMed
Google Scholar
Craddock C, Lavagi I, Yang Z: New insights into Rho signaling from plant ROP/Rac GTPases. Trends Cell Biol. 2012, 22: 492-501. 10.1016/j.tcb.2012.05.002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bischoff F, Molendijk A, Rajendrakumar CS, Palme K: GTP-binding proteins in plants. Cell Mol Life Sci. 1999, 55: 233-256. 10.1007/s000180050287.
Article
CAS
PubMed
Google Scholar
Winge P, Brembu T, Kristensen R, Bones AM: Genetic structure and evolution of RAC-GTPases in Arabidopsis thaliana. Genetics. 2000, 156 (4): 1959-1971.
PubMed Central
CAS
PubMed
Google Scholar
Christensen TM, Vejlupkova Z, Sharma YK, Arthur KM, Spatafora JW, Albright CA, Meeley RB, Duvick JP, Quatrano RS, Fowler JE: Conserved subgroups and developmental regulation in the monocot rop gene family. Plant Physiol. 2003, 133: 1791-1808. 10.1104/pp.103.029900.
Article
PubMed Central
CAS
PubMed
Google Scholar
Humphries JA, Vejlupkova Z, Luo A, Meeley RB, Sylvester AW, Fowler JE, Smith LG: ROP GTPases act with the receptor-like protein PAN1 to polarize asymmetric cell division in maize. Plant Cell. 2011, 23 (6): 2273-2284. 10.1105/tpc.111.085597.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kawasaki T, Henmi K, Ono E: The small GTP-binding protein rac is a regulator of cell death in plants. Proc Natl Acad Sci U S A. 1999, 96: 10922-10926. 10.1073/pnas.96.19.10922.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Umemura K, Umezawa T, Shimamoto K: Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc Natl Acad Sci U S A. 2006, 103 (1): 230-235. 10.1073/pnas.0509875103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ono E, Wong HL, Kawasaki T, Hasegawa M, Kodama O, Shimamoto K: Essential role of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci U S A. 2001, 98 (2): 759-764. 10.1073/pnas.98.2.759.
Article
PubMed Central
CAS
PubMed
Google Scholar
Oda T, Hashimoto H, Kuwabara N, Akashi S, Hayashi K, Kojima C, Wong HL, Kawasaki T, Shimamoto K, Sato M, Shimizu T: Structure of the N-terminal regulatory domain of a plant NADPH oxidase and its functional implications. J Biol Chem. 2010, 285 (2): 1435-1445. 10.1074/jbc.M109.058909.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schultheiss H, Hensel G, Imani J, Broeders S, Sonnewald U, Kogel KH, Kumlehn J, Hückelhoven R: Ectopic expression of constitutively activated RACB in barley enhances susceptibility to powdery mildew and abiotic stress. Plant Physiol. 2005, 139 (1): 353-362. 10.1104/pp.105.066613.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schultheiss H, Preuss J, Pircher T, Eichmann R, Hückelhoven R: Barley RIC171 interacts with RACB in planta and supports entry of the powdery mildew fungus. Cell Microbiol. 2008, 10 (9): 1815-1826. 10.1111/j.1462-5822.2008.01167.x.
Article
CAS
PubMed
Google Scholar
Jung YH, Agrawal GK, Rakwal R, Kim JA, Lee MO, Choi PG, Kim YJ, Kim MJ, Shibato J, Kim SH, Iwahashi H, Jwa NS: Functional characterization of OsRacB GTPase-a potentially negative regulator of basal disease resistance in rice. Plant Physiol Biochem. 2006, 44 (1): 68-77. 10.1016/j.plaphy.2005.12.001.
Article
CAS
PubMed
Google Scholar
Chen L, Shiotani K, Togashi T: Analysis of the Rac/Rop small GTPase family in rice: expression, subcellular localization and role in disease resistance. Plant Cell Physiol. 2010, 51 (4): 585-595. 10.1093/pcp/pcq024.
Article
CAS
PubMed
Google Scholar
Hassanain HH, Sharma Y, Moldovan L, Khramtsov V, Berliner LJ, Duvick JP, Goldschmidt-Clermont PJ: Plant rac proteins induce superoxide production in mammalian cells. Biochem Biophys Res Commun. 2000, 272: 783-788. 10.1006/bbrc.2000.2791.
Article
CAS
PubMed
Google Scholar
Potikha TS, Collins CC, Johnson DI, Delmer DP, Levine A: The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol. 1999, 119 (3): 849-858. 10.1104/pp.119.3.849.
Article
PubMed Central
CAS
PubMed
Google Scholar
Park J, Choi HJ, Lee S, Lee T, Yang Z, Lee Y: Rac-related GTP-binding protein in elicitor-induced reactive oxygen generation by suspension-cultured soybean cells. Plant Physiol. 2000, 124 (2): 725-732. 10.1104/pp.124.2.725.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang AR, Chen X, Zhang DM, Chen HH, Lu GD, Wang ZH: Effects of different Arabidopsis ROPs on multiplication of Pseudomonas syringae pv. tomato DC3000. J Fujian Agric For Univ (Natural Science Edition). 2008, 37 (6): 610-613.
Google Scholar
Schultheiss H, Dechert C, Kogel KH, Hückelhoven R: A small GTP-binding host protein is required for entry of powdery mildew fungus into epidermal cells of barley. Plant Physiol. 2002, 128 (4): 1447-1454. 10.1104/pp.010805.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pathuri IP, Zellerhoff N, Schaffrath U, Hensel G, Kumlehn J, Kogel KH, Eichmann R, Hückelhoven R: Constitutively activated barley ROPs modulate epidermal cell size, defense reactions and interactions with fungal leaf pathogens. Plant Cell Rep. 2008, 27 (12): 1877-1887. 10.1007/s00299-008-0607-9.
Article
CAS
PubMed
Google Scholar
Hoefle C, Huesmann C, Schultheiss H: A barley ROP GTPase ACTIVATING PROTEIN associates with microtubules and regulates entry of the barley powdery mildew fungus into leaf epidermal cells. Plant Cell. 2011, 23 (6): 2422-2439. 10.1105/tpc.110.082131.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schiene K, Puhler A, Niehaus K: Transgenic tobacco plants that express an antisense construct derived from a Medicago sativa cDNA encoding a Rac-related small GTP-binding protein fail to develop necrotic lesions upon elicitor infiltration. Mol Gen Genet. 2000, 263 (5): 761-770. 10.1007/s004380000248.
Article
CAS
PubMed
Google Scholar
Leonard MK, Hannah FB, Christine S, Wimmer D, Korte J, Schmitz U, Niehaus K, Colditz F: Silencing of the Rac1 GTPase MtROP9 in medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection. Plant Physiol. 2012, 159 (1): 501-516. 10.1104/pp.112.193706.
Article
Google Scholar
Doke N: Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol Plant Pathol. 1983, 23: 345-357. 10.1016/0048-4059(83)90019-X.
Article
CAS
Google Scholar
Yoshioka H, Numata N, Nakajima S, Katou S, Kawakita K, Rowland O, Jones JD, Doke N: Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell. 2003, 15 (3): 706-718. 10.1105/tpc.008680.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lamb C, Dixon RA: The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol. 1997, 48: 251-275. 10.1146/annurev.arplant.48.1.251.
Article
CAS
PubMed
Google Scholar
Delledonne M, Zeier J, Marocco A, Lamb C: Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci U S A. 2001, 98: 13454-13459. 10.1073/pnas.231178298.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kim DS, Jeun Y, Hwang BK: The pepper patatin-like phospholipase CaPLP1 functions in plant cell death and defense signaling. Plant Mol Biol. 2014, 84 (3): 329-344. 10.1007/s11103-013-0137-x.
Article
CAS
PubMed
Google Scholar
Ono E, Wong HL, Kawasaki T, Hasegawa M, Kodama O, Shimamoto K: Essential role of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci U S A. 2001, 98: 759-764. 10.1073/pnas.98.2.759.
Article
PubMed Central
CAS
PubMed
Google Scholar
Glazebrook J: Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol. 2005, 43: 205-227. 10.1146/annurev.phyto.43.040204.135923.
Article
CAS
PubMed
Google Scholar
Kunkel BN, Brooks DM: Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol. 2002, 5: 325-331. 10.1016/S1369-5266(02)00275-3.
Article
CAS
PubMed
Google Scholar
Durrant WE, Dong X: Systemic acquired resistance. Annu Rev Phytopathol. 2004, 42: 185-209. 10.1146/annurev.phyto.42.040803.140421.
Article
CAS
PubMed
Google Scholar
Halim V, Eschen-Lippold L, Altmann S, Birschwilks M, Scheel D, Rosahl S: Salicylic acid is important for basal defense of Solanum tuberosum against Phytophthora infestans. Mol Plant-Microbe Interact. 2007, 11: 1346-1352. 10.1094/MPMI-20-11-1346.
Article
Google Scholar
Coquoz JL, Buchala AJ, Meuwly P, Métraux JP: Arachidonic acid induces local but not systemic synthesis of salicylic acid and confers systemic resistance in potato plants to Phytophthora infestans and Alternaria solani. Biochem Cell Biol. 1995, 85: 1219-1224.
CAS
Google Scholar
Penninckx IA, Thomma BP, Buchala A, Métraux JP, Broekaert WF: Concomitant activation of jamonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell. 1998, 10 (12): 2103-2113. 10.1105/tpc.10.12.2103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Spoel SH, Koornnef A, Claessens SM, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Métraux JP, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CM: NPR1 modulates cross-talk between salicylate- and jasmonatedependent defense pathways through a novel function in the cytosol. Plant Cell. 2003, 15 (3): 760-770. 10.1105/tpc.009159.
Article
PubMed Central
CAS
PubMed
Google Scholar
Truman W: Arabiodopsis systemic immunity uses conserved defence signaling pathways and is mediated by jasmonates. Proc Natl Acad Sci U S A. 2007, 104 (3): 1075-1080. 10.1073/pnas.0605423104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Van Wees SCM, Chang H-S, Zhu T, Glazebrook J: Characterization of the early response of Arabidopsis to Alternaria brassicicola infection using expression profiling. Plant Physiol. 2003, 132 (2): 606-617. 10.1104/pp.103.022186.
Article
PubMed Central
CAS
PubMed
Google Scholar
Segal AW, Abo A: The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem Sci. 1993, 18: 43-47. 10.1016/0968-0004(93)90051-N.
Article
CAS
PubMed
Google Scholar
Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C: A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell. 1998, 10: 255-266.
PubMed Central
CAS
PubMed
Google Scholar
Neill S, Desikan R, Hancock J: Hydrogen peroxide signaling. Curr Opin Plant Biol. 2002, 5 (5): 388-395. 10.1016/S1369-5266(02)00282-0.
Article
CAS
PubMed
Google Scholar
Letian C, Kenji S, Takashi T, Miki D, Aoyama M, Wong HL, Kawasaki T, Shimamoto K: Analysis of the Rac/Rop small GTPase family in rice: expression, subcellular localization and role in disease resistance. Plant Cell Physiol. 2010, 51 (4): 585-595. 10.1093/pcp/pcq024.
Article
Google Scholar
Suharsono U, Fujisawa Y, Kawasaki T, Iwasaki Y, Satoh H, Shimamoto K: The heterotrimeric G protein α subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci U S A. 2002, 99 (20): 13307-13312. 10.1073/pnas.192244099.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wolfgang M, Keiko Y, Daniel FK: Involvement of the small GTPase Rac in the defense responses of tobacco to pathogen. MPMI. 2005, 18 (2): 116-124. 10.1094/MPMI-18-0116.
Article
Google Scholar
Morel J, Fromentin J, Blein JP, Simon-Plas F, Elmayan T: Rac regulation of NtrbohD, the oxidase responsible for the oxidative burst in elicited tobacco cell. Plant J. 2004, 37 (2): 282-293. 10.1046/j.1365-313X.2003.01957.x.
Article
CAS
PubMed
Google Scholar
Lambeth JD: Regulation of the phagocyte respiratory burst oxidase by protein interactions. J Biochem Mol Biol. 2000, 33: 427-439.
CAS
Google Scholar
Bokoch GM, Diebold BA: Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood. 2002, 100: 2692-2696. 10.1182/blood-2002-04-1149.
Article
CAS
PubMed
Google Scholar
Gao L, Tu ZJ, Millett BP, Bradeen JM: Insights into organ-specific pathogen defense responses in plants: RNA-seq analysis of potato tuber-Phytophthora infestans interactions. BMC Genomics. 2013, 14: 340-10.1186/1471-2164-14-340.
Article
PubMed Central
CAS
PubMed
Google Scholar
Frank VB, Eva V, James FD, Dirk I: The role of active oxygen species in plant signal transduction. Plant Sci. 2001, 161: 405-414. 10.1016/S0168-9452(01)00452-6.
Article
Google Scholar
Na R, Zhang Z, Yu X, Zhang X, Yang F, Zhao J: ROS and salicylic acid (SA) play roles on the resistance establishment of the potato cultivar Zihuabai to Phytophthora infestans. J Plant Dis Prot. 2013, 119 (5/6): 191-199.
Google Scholar
Eschen-Lippold L, Altmann S, Rosahl S: DL-beta-aminobutyric acid-induced resistance of potato against Phytophthora infestans requires salicylic acid but not oxylipins. Mol Plant Microbe Interact. 2010, 23 (5): 585-592. 10.1094/MPMI-23-5-0585.
Article
CAS
PubMed
Google Scholar
Dong X: NPR1, all things considered. Curr Opin Plant Biol. 2004, 7: 547-552. 10.1016/j.pbi.2004.07.005.
Article
CAS
PubMed
Google Scholar
Divi UK, Rahman T, Krishna P: Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol. 2010, 10: 151-10.1186/1471-2229-10-151.
Article
PubMed Central
PubMed
Google Scholar
Choi J, Huh SU, Kojima M, Sakakibara H, Paek KH, Hwang I: The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev Cell. 2010, 19: 284-295. 10.1016/j.devcel.2010.07.011.
Article
CAS
PubMed
Google Scholar
Navarro L, Bari R, Achard P, Lisón P, Nemri A, Harberd NP, Jones JD: DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol. 2008, 18 (9): 650-655. 10.1016/j.cub.2008.03.060.
Article
CAS
PubMed
Google Scholar
Hu C: Screening of Potato Clones with Horizontal Resistance to Late Blight(Phytophthora Infestans). Wu Ha: Huazhong Agricultural University; 2003.
Google Scholar
Hernández JA, Ferrer MA, Jiménez A, Barceló AR, Sevilla F: Antioxidant systems and O2.-/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol. 2001, 127 (3): 817-831. 10.1104/pp.010188.
Article
PubMed Central
PubMed
Google Scholar
Su GX, An ZF, Liu YL, Liu Y: Light promotes the synthesis of lignin through the production of H2O2 mediated by diamine oxidases in soybean hypocotyls. J Plant Phys. 2005, 162 (2): 1297-1303. 10.1016/j.jplph.2005.04.033.
Article
CAS
Google Scholar
Wang Z, Mao H, Dong C, Ji R, Cai L, Fu H, Liu S: Overexpression of Brassica napus MPK4 enhance resistance to sclerotinia sclerotiorum in oilseed rape. MPMI. 2009, 22 (3): 235-244. 10.1094/MPMI-22-3-0235.
Article
CAS
PubMed
Google Scholar
Doyle JJ, Doyle JL: A rapid DNA isolation procedure for small quantities of leaf tissue. Phytochem Bull. 1987, 19: 11-15.
Google Scholar
Lennart EL, Grit R, Michael S, Göbel C, Feussner I, Rosahl S: Reduction of divinyl ether-containing polyunsaturated fatty acids in transgenic potato plants. Phytochemistry. 2007, 68: 797-801. 10.1016/j.phytochem.2006.12.010.
Article
Google Scholar