Kaul ML: Male sterility in higher plants: Springer-Verlag, Berlin, Germany; 1988.
Chapter
Google Scholar
Ding J, Lu Q, Ouyang Y, Mao H, Zhang P, Yao J, Xu C, Li X, Xiao J, Zhang Q: A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci. 2011, 109 (7): 2654-70. 10.1073/pnas.1121374109.
Article
Google Scholar
Luo D-P, Xu H, Liu Z-L, Guo J-X, Li H-Y, Chen L-T, Fang C, Zhang Q-Y, Bai M, Yao N, Wu H, J C-H, Zheng H-Q, Chen Y-L, Ye S, Li X-Y, Zhao X-C, Li R-Q, Liu Y-G: A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat Genet. 2012, 45 (5): 573-8. 10.1038/ng.2570.
Article
Google Scholar
Zhang H, Xu C, He Y, Zong J, Yang X, Si H, Sun Z, Hu J, Liang W, Zhang D: Mutation in CSA creates a new photoperiod-sensitive genic male sterile line applicable for hybrid rice seed production. Proc Natl Acad Sci. 2013, 110 (1): 76-81. 10.1073/pnas.1213041110.
Article
PubMed Central
PubMed
Google Scholar
Shih-Cheng L, Loung Ping Y: Hybrid rice breeding in China. Innovative approaches to rice breeding: Selected papers form the 1979 International Rice Research Conference International Rice Research Institute, Los Banos, Philippines. 1980, 35-51.
Google Scholar
Shi Y, Zhao S, Yao J: Premature tapetum degeneration: a major cause of abortive pollen development in photoperiod sensitive genic male sterility in rice. J Integr Plant Biol. 2009, 51 (8): 774-81. 10.1111/j.1744-7909.2009.00849.x.
Article
PubMed
Google Scholar
Zhou H, Liu Q-J, Li J, Jiang D-G, Zhou L-Y, Wu P, Lu S, Li F, Zhu L-Y, Liu Z-L, Chen L-T, Liu Y-G, Zhuang C-X: Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res. 2012, 22 (4): 649-60. 10.1038/cr.2012.28.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang H, Liang W, Yang X, Luo X, Jiang N, Ma H, Zhang D: Carbon starved anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. Plant Cell. 2010, 22 (3): 18-10.1105/tpc.109.073668.
Article
Google Scholar
Li S, Yang D, Zhu Y: Characterization and Use of male sterility in hybrid rice breeding. J Integr Plant Biol. 2007, 49 (6): 791-804. 10.1111/j.1744-7909.2007.00513.x.
Article
CAS
Google Scholar
Zhu W, Liu K, Wang X-D: Heterosis in yield, fiber quality, and photosynthesis of okra leaf oriented hybrid cotton (Gossypium hirsutum L.). Euphytica. 2008, 164 (1): 283-91. 10.1007/s10681-008-9732-3.
Article
CAS
Google Scholar
Ma J, Wei H, Liu J, Song M, Pang C, Wang L, Zhang W, Fan S, Yu S: Selection and characterization of a novel photoperiod-sensitive male sterile line in upland cotton. J Integr Plant Biol. 2013, 55 (7): 608-18. 10.1111/jipb.12067.
Article
CAS
PubMed
Google Scholar
Deeba F, Pandey AK, Ranjan S, Mishra A, Singh R, Sharma YK, Shirke PA, Pandey V: Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiol Biochem. 2012, 53: 6-18. 10.1016/j.plaphy.2012.01.002.
Article
CAS
PubMed
Google Scholar
Liu G, Tian H, Huang Y-Q, Hu J, Ji Y-X, Li S-Q, Feng Y-Q, Guo L, Zhu Y-G: Alterations of mitochondrial protein assembly and jasmonic acid biosynthesis pathway in Honglian (HL)-type cytoplasmic male sterility rice. J Biol Chem. 2012, 287 (47): 40051-60. 10.1074/jbc.M112.382549.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sheoran IS, Ross ARS, Olson DJH, Sawhney VK: Differential expression of proteins in the wild type and 7B-1 male-sterile mutant anthers of tomato (Solanum lycopersicum): a proteomic analysis. J Proteomics. 2009, 71 (6): 624-36. 10.1016/j.jprot.2008.10.006.
Article
CAS
PubMed
Google Scholar
Sheoran IS, Sawhney VK: Proteome analysis of the normal and Ogura (ogu) CMS anthers of Brassica napus to identify proteins associated with male sterility. Botany. 2010, 88 (3): 217-30. 10.1139/B09-085.
Article
CAS
Google Scholar
Yue J, Ren Y, Wu S, Zhang X, Wang H, Tang C: Differential proteomic studies of the genic male-sterile line and fertile line anthers of upland cotton (Gossypium hirsutum L.). Genes Genomics. 2014, 36 (4): 415-26. 10.1007/s13258-014-0176-y.
Article
CAS
Google Scholar
Wang D, Adams CM, Fernandes JF, Egger RL, Walbot V: A low molecular weight proteome comparison of fertile and male sterile 8 anthers of Zea mays. Plant Biotechnol J. 2012, 10 (8): 925-35. 10.1111/j.1467-7652.2012.00721.x.
Article
PubMed Central
PubMed
Google Scholar
Zheng R, Yue S, Xu X, Liu J, Xu Q, Wang X, Han L, Yu D: Proteome analysis of the wild and YX-1 male sterile mutant anthers of wolfberry (Lycium barbarum L.). PLoS One. 2012, 7 (7): e41861-10.1371/journal.pone.0041861.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cheng Y, Wang Q, Li Z, Cui J, Hu S, Zhao H, Chen M: Cytological and Comparative Proteomic Analyses on Male Sterility in Brassica napus L. Induced by the Chemical Hybridization Agent Monosulphuron Ester Sodium. PLoS One 2013, 8(11):e8019.
Google Scholar
Min L, Li YY, Hu Q, Zhu LF, Gao WH, Wu YL, Ding YH, Liu SM, Yang XY, Zhang XL: Sugar and auxin signaling pathways respond to high-temperature stress during anther development as revealed by transcript profiling analysis in cotton. Plant Physiol. 2014, 164 (3): 1293-308. 10.1104/pp.113.232314.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ma J, Wei H, Song M, Pang C, Liu J, Wang L, Zhang J, Fan S, Yu S: Transcriptome profiling analysis reveals that flavonoid and ascorbate-glutathione cycle Are important during anther development in upland cotton. PLoS One. 2012, 7 (11): e49244-10.1371/journal.pone.0049244.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li Y-J, Zhang X-Y, Wang F-X, Yang C-L, Liu F, Xia G-X, Sun J: A comparative proteomic analysis provides insights into pigment biosynthesis in brown color fiber. J Proteomics. 2013, 78: 374-88. 10.1016/j.jprot.2012.10.005.
Article
CAS
PubMed
Google Scholar
Wilson ZA, Zhang D-B: From Arabidopsis to rice: pathways in pollen development. J Exp Bot. 2009, 60 (5): 1479-92. 10.1093/jxb/erp095.
Article
CAS
PubMed
Google Scholar
Ariizumi T, Toriyama K: Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol. 2011, 62: 437-60. 10.1146/annurev-arplant-042809-112312.
Article
CAS
PubMed
Google Scholar
Vizcay-Barrena G, Wilson ZA: Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. J Exp Bot. 2006, 57 (11): 2709-17. 10.1093/jxb/erl032.
Article
CAS
PubMed
Google Scholar
Li X, Gao X, YiWei LD, Ouyang Y, Chen G, Li X, Qifa Z, Wu C: Rice APOPTOSIS INHIBITOR5 coupled with Two DEAD-Box adenosine 5′-triphosphate-dependent RNA helicases regulates tapetum degeneration. Plant Cell. 2011, 23 (4): 1416-34. 10.1105/tpc.110.082636.
Article
PubMed Central
CAS
PubMed
Google Scholar
Holmes-Davis R, Tanaka CK, Vensel WH, Hurkman WJ, McCormick S: Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics. 2005, 5 (18): 4864-84. 10.1002/pmic.200402011.
Article
CAS
PubMed
Google Scholar
Noir S, Bräutigam A, Colby T, Schmidt J, Panstruga R: A reference map of the Arabidopsis thaliana mature pollen proteome. Biochem Biophys Res Commun. 2005, 337 (4): 1257-66. 10.1016/j.bbrc.2005.09.185.
Article
CAS
PubMed
Google Scholar
Grobei MA, Qeli E, Brunner E, Rehrauer H, Zhang R, Roschitzki B, Basler K, Ahrens CH, Grossniklaus U: Deterministic protein inference for shotgun proteomics data provides new insights into Arabidopsis pollen development and function. Genome Res. 2009, 19 (10): 1786-800. 10.1101/gr.089060.108.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dobritsa AA, Lei Z, Nishikawa S-i, Urbanczyk-Wochniak E, Huhman DV, Preuss D, Sumner LW: LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis. Plant Physiol. 2010, 153 (3): 937-55. 10.1104/pp.110.157446.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ischebeck T, Valledor L, Lyon D, Gingl S, Nagler M, Meijon M, Egelhofer V, Weckwerth W: Comprehensive cell-specific protein analysis in early and late pollen development from diploid microsporocytes to pollen tube growth. Mol Cell Proteomics. 2014, 13 (1): 295-310. 10.1074/mcp.M113.028100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Goldberg RB, Beals TP, Sanders PM: Anther development: basic principles and practical applications. Plant Cell. 1993, 5 (10): 1217-29. 10.1105/tpc.5.10.1217.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wei M, Song M, Fan S, Yu S: Transcriptomic analysis of differentially expressed genes during anther development in genetic male sterile and wild type cotton by digital gene-expression profiling. BMC Genomics. 2013, 14 (1): 97-10.1186/1471-2164-14-97.
Article
PubMed Central
CAS
PubMed
Google Scholar
Linke B, Borner T: Mitochondrial effects on flower and pollen development. Mitochondrion. 2005, 5 (6): 389-402. 10.1016/j.mito.2005.10.001.
Article
CAS
PubMed
Google Scholar
Buer CS, Imin N, Djordjevic MA: Flavonoids: new roles for old molecules. J Integr Plant Biol. 2010, 52 (1): 98-111. 10.1111/j.1744-7909.2010.00905.x.
Article
CAS
PubMed
Google Scholar
Dobritsa AA, Shrestha J, Morant M, Pinot F, Matsuno M, Swanson R, Møller BL, Preuss D: CYP704B1 is a long-chain fatty acid ω-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiol. 2009, 151 (2): 574-89. 10.1104/pp.109.144469.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mou Z, He Y, Dai Y, Liu X, Li J: Deficiency in fatty acid synthase leads to premature cell death and dramatic alterations in plant morphology. Plant Cell. 2000, 12 (3): 405-17. 10.1105/tpc.12.3.405.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yui R, Iketani S, Mikami T, Kubo T: Antisense inhibition of mitochondrial pyruvate dehydrogenase E1α subunit in anther tapetum causes male sterility. Plant J. 2003, 34 (1): 57-66. 10.1046/j.1365-313X.2003.01704.x.
Article
CAS
PubMed
Google Scholar
Goetz M, Godt DE, Guivarc’h A, Kahmann U, Chriqui D, Roitsch T: Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. Proc Natl Acad Sci. 2001, 98 (11): 6522-7. 10.1073/pnas.091097998.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bosch M, Cheung AY, Hepler PK: Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol. 2005, 138 (3): 1334-46. 10.1104/pp.105.059865.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tian G-W, Chen M-H, Zaltsman A, Citovsky V: Pollen-specific pectin methylesterase involved in pollen tube growth. Dev Biol. 2006, 294 (1): 83-91. 10.1016/j.ydbio.2006.02.026.
Article
CAS
PubMed
Google Scholar
Micheli F: Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci. 2001, 6 (9): 414-9. 10.1016/S1360-1385(01)02045-3.
Article
CAS
PubMed
Google Scholar
Röckel N, Wolf S, Kost B, Rausch T, Greiner S: Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins. Plant J. 2008, 53 (1): 133-43. 10.1111/j.1365-313X.2007.03325.x.
Article
PubMed
Google Scholar
Zhang GY, Feng J, Wu J, Wang XW: BoPMEI1, a pollen-specific pectin methylesterase inhibitor, has an essential role in pollen tube growth. Planta. 2010, 231 (6): 1323-34. 10.1007/s00425-010-1136-7.
Article
CAS
PubMed
Google Scholar
Muschietti J, Dircks L, Vancanneyt G, McCormick S: LAT52 protein is essential for tomato pollen development: pollen expressing antisense LAT52 RNA hydrates and germinates abnormally and cannot achieve fertilization. Plant J. 1994, 6 (3): 321-38. 10.1046/j.1365-313X.1994.06030321.x.
Article
CAS
PubMed
Google Scholar
Li B, He L, Guo S, Li J, Yang Y, Yan B, Sun J, Li J: Proteomics reveal cucumber Spd-responses under normal condition and salt stress. Plant Physiol Biochem. 2013, 67: 7-14. 10.1016/j.plaphy.2013.02.016.
Article
CAS
PubMed
Google Scholar
Sheoran IS, Ross ARS, Olson DJH, Sawhney VK: Compatibility of plant protein extraction methods with mass spectrometry for proteome analysis. Plant Sci. 2009, 176 (1): 99-104. 10.1016/j.plantsci.2008.09.015.
Article
CAS
Google Scholar
Pang C-Y, Wang H, Pang Y, Xu C, Jiao Y, Qin Y-M, Western TL, Yu S-X, Zhu Y-X: Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation. Mol Cell Proteomics. 2010, 9 (9): 2019-33. 10.1074/mcp.M110.000349.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang K-B, Wang Z-W, Li F-G, Ye W-W, Wang J-Y, Song G-L, Yue Z, Cong L, Shang H-H, Zhu S-L, Zou C-S, Li Q, Yuan Y-L, Lu C-R, Wei H-L, Gou C-Y, Zheng Z-Q, Yin Y, Zhang X-Y, Liu K, Wang B, Song C, Shi N, Kohel RJ, Percy RG, Yu JZ, Zhu Y-X, Wang J, Yu S-X: The draft genome of a diploid cotton Gossypium raimondii. Nat Genet. 2012, 44 (10): 1098-103. 10.1038/ng.2371.
Article
CAS
PubMed
Google Scholar
Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C: Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet. 2014, 46 (6): 567-72. 10.1038/ng.2987.
Article
CAS
PubMed
Google Scholar
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M: KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007, 35 (suppl 2): W182-5. 10.1093/nar/gkm321.
Article
PubMed Central
PubMed
Google Scholar
Emanuelsson O, Brunak S, von Heijne G, Nielsen H: Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2007, 2 (4): 953-71. 10.1038/nprot.2007.131.
Article
CAS
PubMed
Google Scholar