Dinneny J, Long T, Wang J, Jung J, Mace D, Pointer S, Barron C, Brady S, Schiefelbein J, Benfey P: Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science. 2008, 320: 942-945.
CAS
PubMed
Google Scholar
Wolters H, Jürgens G: Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet. 2009, 10: 305-317.
CAS
PubMed
Google Scholar
Garay-Arroyo A, Sánchez M, García-Ponce B, Azepeitia E, Alvarez-Buylla E: Hormone symphony during root growth and development. Dev Dyn. 2012, 241: 1867-1885.
CAS
PubMed
Google Scholar
Perilli S, Di Mambro R, Sabatini S: Growth and development of the root apical meristem. Curr Opin Plant Biol. 2012, 15: 17-23.
CAS
PubMed
Google Scholar
Petricka J, Winter C, Benfey P: Control of Arabidopsis root development. Annu Rev Plant Biol. 2012, 63: 563-590.
PubMed Central
CAS
PubMed
Google Scholar
Rymen B, Sugimoto K: Tuning growth to the environmental demands. Curr Opin Plant Biol. 2012, 15 (6): 683-690.
PubMed
Google Scholar
Ubeda-Tomás S, Bennett M: Plant development: size matters, and it’s all down to hormones. Curr Biol. 2010, 20 (12): R511-R513.
PubMed
Google Scholar
Worden N, Park E, Drakakaki G: Trans-Golgi network – an intersection of trafficking cell wall components. J Integr Plant Biol. 2012, 54 (11): 875-886.
CAS
PubMed
Google Scholar
Clouse S: Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell. 2011, 23 (4): 1219-1230.
PubMed Central
CAS
PubMed
Google Scholar
Rigó G, Ayaydin F, Tietz O, Zsigmond L, Kovács H, Páy A, Salchert K, Darula Z, Medzihradszky K, Szabados L, Palme K, Koncz C, Cséplo A: Inactivation of plasma membrane-localized CDPK-RELATED KINASE5 decelerates PIN2 exocytosis and root gravitropic response in Arabidopsis. Plant Cell. 2013, 25: 1592-1608.
PubMed Central
PubMed
Google Scholar
Kleine-Vehn J, Friml J: Polar targeting and endocytic recycling in auxin-dependent plant development. Annu Rev Cell Dev Biol. 2008, 24: 447-473.
CAS
PubMed
Google Scholar
Wightman R, Turner S: Trafficking of plant cellulose synthase complex. Plant Physiol. 2010, 153: 427-432.
PubMed Central
CAS
PubMed
Google Scholar
Symons G, Ross J, Jager C, Reid J: Brassinosteroid transport. J Exp Bot. 2008, 59 (1): 17-24.
CAS
PubMed
Google Scholar
Cosgrove D: Growth of the plant cell wall. Nat Rev Mol Cell Biol. 2005, 6: 850-861.
CAS
PubMed
Google Scholar
Driouich A, Follet-Gueye M, Bernard S, Kousar S, Chevalier L, Vicré-Gibouin M, Lerouxel O: Golgi-mediated synthesis and secretion of matrix polysaccharides of the primary cell wall of higher plants. Front Plant Sci. 2012, 3: 1-15. Article 79.
Google Scholar
He B, Guo W: The exocyst complex in polarized exocytosis. Curr Opin Cell Biol. 2009, 21: 537-542.
PubMed Central
CAS
PubMed
Google Scholar
Liu J, Guo W: The exocyst complex in exocytosis and cell migration. Protoplasma. 2011, 249 (3): 587-597.
PubMed
Google Scholar
Heider M, Munson M: Exorcising the exocyst complex. Traffic. 2012, 13 (7): 898-907.
PubMed Central
CAS
PubMed
Google Scholar
Zárský V, Kulich I, Fendrych M, Pecenková T: Exocyst complexes multiple functions in plant cells secretory pathways. Curr Opin Plant Biol. 2013, 16: 726-733.
PubMed
Google Scholar
Zárský V, Cvrčková F, Potocký M, Hála M: Exocytosis and cell polarity in plants – exocyst and recycling domains. New Phytol. 2009, 183: 255-272.
PubMed
Google Scholar
Wu H, Rossi G, Brennwald P: The ghost in the machine: small GTPases as spatial regulators of exocytosis. Trends in Cell Biol. 2008, 18 (9): 397-404.
CAS
Google Scholar
Sivaram M, Saporita J, Furgason M, Boettcher A, Munson M: Dimerization of the exocyst protein Sec6p and its interaction with the t-SNARE Sec9p. Biochemistry. 2005, 44: 6302-6311.
CAS
PubMed
Google Scholar
Rivera-Molina F, Toomre D: Live-cell imaging of exocyst links its spatiotemporal dynamics to various stages of vesicle fusion. J Cell Biol. 2013, 201 (5): 673-680.
PubMed Central
CAS
PubMed
Google Scholar
Pečenková T, Hála M, Kulich I, Kocourková D, Drdová E, Fendrych M, Toupalová H, Žárský V: The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant-pathogen interaction. J Exp Bot. 2011, 62 (6): 2107-2116.
PubMed Central
PubMed
Google Scholar
Cvrčková F, Grunt M, Bezvoda R, Hála H, Kulich I, Rawat S, Žárský V: Evolution of the land plant exocyst complexes. Front Plant Sci. 2012, 3: 159.
PubMed Central
PubMed
Google Scholar
Zhang Y, Liu C, Emons A, Ketelaar T: The Plant Exocyst. J Integr Plant Biol. 2010, 52 (2): 138-146.
CAS
PubMed
Google Scholar
Hála M, Cole R, Synek L, Drdová E, Pečenková T, Nordheim A, Lamkemeyer T, Madlung J, Hochholdinger F, Fowler J, Žárský V: An exocyst complex functions in plant cell growth in arabidopsis and tobacco. Plant Cell. 2008, 20: 1330-1345.
PubMed Central
PubMed
Google Scholar
Cole R, Synek L, Žárský V, Fowler J: SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth. Plant Physiol. 2005, 138: 2005-2018.
PubMed Central
CAS
PubMed
Google Scholar
Synek L, Schlager N, Eliáš M, Quentin M, Hauser M, Žárský V: AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J. 2006, 48: 54-72.
PubMed Central
CAS
PubMed
Google Scholar
Fendrych M, Synek L, Pečenková T, Toupalová H, Cole R, Drdová E, Nebesářová J, Šedinová M, Hála M, Fowler J, Žárský V: The Arabidopsis exocyst complex is involved in cytokinesis and cell plate maturation. Plant Cell. 2010, 22: 3053-3065.
PubMed Central
CAS
PubMed
Google Scholar
Li S, Chen C, Yu D, Ren S, Sun S, Liu L, Ketelaar T, Emons A, Liu C: EXO70A1-mediated vesicle trafficking is critical for tracheary element development in Arabidopsis. Plant Cell. 2013, 25: 1774-1786.
PubMed Central
CAS
PubMed
Google Scholar
Wu J, Tan X, Wu C, Cao K, Li Y, Bao Y: Regulation of cytokinesis by exocyst subunit SEC6 and KEULE in Arabidopsis thaliana . Mol Plant. 2013, 6 (6): 1863-1876.
CAS
PubMed
Google Scholar
Rybak K, Steiner A, Synek L, Klaeger S, Kulich I, Facher E, Wanner G, Kuster B, Zarsky V, Persson S, Assaad F: Plant cytokinesis is orchestrated by the sequential action of the TRAPPII and Exocyst tethering complexes. Dev Cell. 2014, 29: 607-620.
CAS
PubMed
Google Scholar
Fendrych M, Synek L, Pečenková T, Drdová E, Sekereš J, de Rycke R, Moritz K, Nowack M, Žárský V: Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana . Mole Biol Cell. 2013, 24: 510-520.
CAS
Google Scholar
Zhang Y, Immink R, Liu C, Emons A, Ketelaar T: The Arabidopsis exocyst subunit SEC3A is essential for embryo development and accumulates in transient puncta at the plasma membrane. New Phytol. 2013, 199: 74-88.
CAS
PubMed
Google Scholar
Drdová E, Synek L, Pečenková T, Hála M, Kulich I, Fowler J, Murphy A, Žárský V: The exocyst complex contributes to PIN auxin efflux carrier recycling and polar auxin transport in Arabidopsis. Plant J. 2012, 73: 709-713.
Google Scholar
Lavy M, Bloch D, Hazak O, Gutman I, Poraty L, Sorek N, Sternberg H, Yalovsky S: A novel ROP/RAC effector links cell polarity, root-meristem maintenance, and vesicle trafficking. Curr Biol. 2007, 17: 947-952.
CAS
PubMed
Google Scholar
Hazak O, Bloch D, Poraty L, Sternberg H, Zhang J, Friml J, Yalovsky S: A Rho scaffold integrates the secretory sytem with feedback mechanisms in regulation of auxin distribution. PLoS Biol. 2010, 8 (1): e1000282.
PubMed Central
PubMed
Google Scholar
Van Damme D, Coutuer S, De Rycke R, Bouget F, Inzé D, Geelen D: Somatic cytokinesis and pollen maturation in Arabidopsis depend on TPLATE, which has domains similar to coat proteins. Plant Cell. 2006, 18: 3502-3518.
PubMed Central
CAS
PubMed
Google Scholar
Moubayidin L, Perilli S, Ioio R, Di Mambro R, Costantino P, Sabatini S: The rate of cell differentiation controls the Arabidopsis root meristem growth phase. Curr Biol. 2010, 20: 1138-1143.
CAS
PubMed
Google Scholar
Verbelen J, De Cnodder T, Le J, Vissenberg K, Baluška F: The root apex of Arabidopsis thaliana consists of four distinct zones of growth activities. Plant Signal Behav. 2006, 1 (6): 296-304.
PubMed Central
PubMed
Google Scholar
Ding Z, Friml J: Auxin regulates distal stem cell differentiation in Arabidopsis roots. Proc Natl Acad Sci U S A. 2010, 107 (26): 12046-12051.
PubMed Central
CAS
PubMed
Google Scholar
Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R, Scheres B: PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature. 2007, 449: 1053-1057.
CAS
PubMed
Google Scholar
Colón-Carmona A, You R, Haimovitch-Gal , Doerner P: Spatio-temoral analysis of mitotic activity with a labile cyclin-GUS fusion protein. Plant J. 1999, 20 (4): 503-508.
PubMed
Google Scholar
Rahman A, Bannigan A, Sulaman W, Pechter P, Blancaflor E, Baskin T: Auxin, actin, and growth of the Arabidopsis thaliana primary root. Plant J. 2007, 50: 514-528.
CAS
PubMed
Google Scholar
Ivanov V, Dubrovsky J: Estimation of the cell-cycle duration in the root apical meristem: a model of linkage between cell-cycle duration, rate of cell production, and rate of root growth. Int J Plant Sci. 1997, 158 (6): 757-763.
Google Scholar
González-García M, Vilarrasa-Blasi J, Zhiponova M, Divol F, Mora-García S, Russinova E, Caño-Delgado A: Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development. 2011, 138: 849-859.
PubMed
Google Scholar
Hacham Y, Holland N, Butterfield C, Ubeda-Tomás S, Bennett M, Chory J, Savaldi-Goldstein S: Brassinosteroid perception in the epidermis controls root meristem size. Development. 2011, 138: 839-848.
PubMed Central
CAS
PubMed
Google Scholar
Ritzenthaler C, Nebenführ A, Movafeghl A, Stussi-Garaud C, Behnia L, Pimpl P, Staehelin L, Robinson D: Reevaluation of the effects of brefeldin A on plant cells using tobacco bright yellow 2 cells expressing Golgi-targeted green fluorescent protein and COPI antisera. Plant Cell. 2002, 14: 237-261.
PubMed Central
CAS
PubMed
Google Scholar
Robinson D, Langhans M, Saint-Jore-Dupas C, Hawes C: BFA effects are tissue and not just plant specific. Trends Plant Sci. 2008, 13 (8): 405-408.
CAS
PubMed
Google Scholar
Driouich A, Zhang G, Staehelin L: Effect of Brefeldin A on the structure of the Golgi apparatus and on the synthesis and secretion of proteins and polysaccharides in sycamore maple (Acer pseudoplatanus) suspension-cultured cells. Plant Physiol. 1993, 101: 1363-1373.
PubMed Central
CAS
PubMed
Google Scholar
Schindler T, Bergfeld R, Hohl M, Schopfer P: Inhibition of Golgi-apparatus function by brefeldin A in maize coleoptiles and its consequences on auxin-mediated growth, cell-wall extensibility and secretion of cell-wall proteins. Planta. 1994, 192: 404-413.
CAS
Google Scholar
Lanubile R, Piro G, Dalessandro G: Effect of Brefeldin A on the synthesis and transport of cell wall polysaccharides and proteins in pea root seedlings. J Exp Botany. 1997, 48 (316): 1925-1933.
CAS
Google Scholar
Piro G, Montefussco A, Pacoda D, Dalessandro G: Brefeldin A: a specific inhibitor of cell wall polysaccharide biosynthesis in oat coleoptiles segments. Plant Physiol Biochem. 1999, 37 (1): 33-40.
CAS
Google Scholar
Baluška F, Hlavacka A, Šamaj J, Palme K, Robinson D, Matoh T, McCurdy D, Menzel D, Volkmann D: F-actin dependent endocytosis of cell wall pectins in meristematic root cells. Insights from brefeldin A-induced compartments. Plant Physiol. 2002, 130 (1): 422-431.
PubMed Central
PubMed
Google Scholar
Geldner N, Friml J, Stierhof Y, Jurgens G, Palme K: Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature. 2001, 413: 425-428.
CAS
PubMed
Google Scholar
Grebe M, Friml J, Swarup R, Ljung K, Sandberg G, Terlou M, Palme K, Bennett M, Scheres B: Cell polarity signaling in Arabidopsis involves a BFA-sensitive auxin influx pathway. Current Biol. 2002, 12: 329-334.
CAS
Google Scholar
Takáč T, Pechan T, Richter H, Müller J, Eck C, Böhm N, Obert B, Ren H, Niehaus K, Šamaj J: Proteomics on brefeldin a-treated Arabidopsis roots reveals profilin 2 as a new protein involved in the cross-talk between vesicular trafficking and the actin cytoskeleton. J Proteome Res. 2011, 10 (2): 488-501.
PubMed
Google Scholar
Feraru E, Feraru M, Asaoka R, Paciorek T, De Rycke R, Tanaka H, Nakano A, Friml J: BEX5/RabA1b regulates trans-Golgi network-to-plasma membrane protein trafficking in Arabidopsis. Plant Cell. 2012, 24: 3074-3086.
PubMed Central
CAS
PubMed
Google Scholar
Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Plame K, Scheres B: The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature. 2005, 433: 39-44.
CAS
PubMed
Google Scholar
Saini S, Sharma I, Kaur N, Pati P: Auxin: a master regulator in plant root development. Plant Cell Rep. 2013, 32: 741-757.
CAS
PubMed
Google Scholar
Ioio R, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita M, Aoyama T, Costantino P, Sabatini S: A genetic framework for the control of cell division and differentiation in the root meristem. Science. 2008, 322: 1380-1384.
Google Scholar
Chapman E, Estelle M: Cytokinin and auxin intersection in root meristems. Genome Biol. 2009, 10: 210.
PubMed Central
Google Scholar
Růžička K, Šimášková M, Duclercq J, Petrášek J, Zažímalová E, Simon S, Friml J, Van Montagu M, Benková E: Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proc Natl Acad Sci U S A. 2009, 106 (11): 4284-4289.
PubMed Central
PubMed
Google Scholar
Scacchi E, Salinas P, Gujas B, Santuari L, Krogan N, Ragni L, Berleth T, Hardtke C: Spatio-temporal sequence of cross-regulatory events in root meristem growth. Proc Natl Acad Sci U S A. 2010, 107 (52): 22734-22739.
PubMed Central
CAS
PubMed
Google Scholar
Moubayidin L, Mambro R, Sozzani R, Pacifici E, Salvi E, Terpstra I, Bao D, van Dijken A, Ioio R, Perilli S, Ljung K, Benfey P, Heidstra R, Costantino P, Sabatini S: Spatial coordination between stem cell activity and cell differentiation in the root meristem. Dev Cell. 2013, 26: 405-415.
CAS
PubMed
Google Scholar
Růžička K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Friml J, Benková E: Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell. 2007, 19: 2197-2212.
PubMed Central
PubMed
Google Scholar
Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster G, Sandberg G, Bhalerao R, Ljung K, Bennet M: Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell. 2007, 19: 2186-2196.
PubMed Central
CAS
PubMed
Google Scholar
Strader L, Chen G, Bartel B: Ethylene directs auxin to control root cell expansion. Plant J. 2010, 64: 874-884.
PubMed Central
CAS
PubMed
Google Scholar
Lewis D, Negi S, Sukumar P, Muday G: Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development. 2011, 138: 3485-3495.
CAS
PubMed
Google Scholar
Stepanova A, Yun J, Likhacheva A, Alonso J: Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell. 2007, 19: 2169-2185.
PubMed Central
CAS
PubMed
Google Scholar
Jaillais Y, Fobis-Loisy I, Miège C, Rollin C, Gaude T: AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature. 2006, 443: 106-109.
CAS
PubMed
Google Scholar
Kleine-Vehn J, Dhonukshe P, Swarup R, Bennett M, Friml J: Subcellular trafficking of the Arabidopsis auxin influx carrier uses a novel pathway distinct from PIN1. Plant Cell. 2006, 18: 3171-3181.
PubMed Central
CAS
PubMed
Google Scholar
Robert S, Narasimha Chary S, Drakakaki G, Li S, Yang Z, Raikhel N, Hicks G: Endosidin1 defines a compartment involved in endocytosis of the brassinosteroid receptor BRI1 and the auxin transporters PIN2 and AUX1. Proc Natl Acad Sci U S A. 2008, 105 (24): 8464-8469.
PubMed Central
CAS
PubMed
Google Scholar
Qi X, Kaeda M, Chen J, Geitmann A, Zheng H: A specific role for Arabidopsis TRAPPII in post-Golgi trafficking that is crucial for cytokinesis and cell polarity. Plant J. 2011, 68: 234-248.
CAS
PubMed
Google Scholar
Langowski L, Růžička K, Naramoto S, Kleine-Vehn J, Friml J: Trafficking to the outer polar domain defines the root-soil interface. Curr Biol. 2010, 20: 904-908.
CAS
PubMed
Google Scholar
Sassi M, Lu Y, Zhang Y, Wang J, Dhonukshe P, Blilou I, Dai M, Li J, Ximing G, Jaillais Y, Yu X, Traas J, Ruberti I, Wang H, Scheres B, Vernoux T, Xu J: COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1- and PIN2-dependent auxin transport in Arabidopsis. Development. 2012, 139: 3402-3412.
CAS
PubMed
Google Scholar
Wan Y, Jasik J, Wang L, Hao H, Volkmann D, Menzel D, Mancuso S, Baluška F, Lin J: The signal transducer NPH3 integrates the Phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root phototropism. Plant Cell. 2012, 24: 551-565.
PubMed Central
CAS
PubMed
Google Scholar
Stahl Y, Wink R, Ingram G, Simon R: A signaling module controlling the stem cell niche in Arabidopsis root meristems. Curr Biol. 2009, 19: 909-914.
CAS
PubMed
Google Scholar
Wang Z, Bai M, Oh E, Zhu J: Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet. 2012, 46: 701-724.
CAS
PubMed
Google Scholar
Fridman Y, Savaldi-Goldstein S: Brassinosteroids in growth control: how, when, and where. Plant Sci. 2013, 209: 24-31.
CAS
PubMed
Google Scholar
Tang B, Kim T, Oses-Prieto J, Sun Y, Deng Z, Zhu S, Wang R, Burlingame A, Wang Z: BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science. 2008, 321: 557-560.
PubMed Central
CAS
PubMed
Google Scholar
Mani R, St Onge R, Harman J, Glaever G, Roth F: Defining genetic interaction. Proc Natl Acad Sci U S A. 2008, 105 (9): 3461-3466.
PubMed Central
CAS
PubMed
Google Scholar
Phillips P: Epistasis – the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet. 2008, 9: 855-867.
PubMed Central
CAS
PubMed
Google Scholar
Buschmann H, Lloyd C: Arabidopsis mutants and the network of microtubule-associated functions. Mol Plant. 2008, 1 (6): 888-898.
CAS
PubMed
Google Scholar
Wang Z, Nakano T, Gendron J, He J, Chen M, Vafaeados D, Yang Y, Fujioka S, Yoshida S, Asami T, Chory J: Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell. 2002, 2: 505-513.
CAS
PubMed
Google Scholar
Tanaka K, Asami T, Yoshida S, Nakamura Y, Matsuo T, Okamoto S: Brassinosteroid homeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in its metabolism. Plant Physiol. 2005, 138 (2): 1117-1125.
PubMed Central
CAS
PubMed
Google Scholar
Scacchi E, Osmont K, Beauchat J, Salinas P, Navarrete-Gómez M, Trigueros M, Ferrándiz C, Hardtke C: Dynamic, auxin-responsive plasma membrane-to-nucleus movement of Arabidopsis BRX. Development. 2009, 136: 2059-2067.
CAS
PubMed
Google Scholar
Santuari L, Scacchi E, Rodriguez-Villalon A, Salinas P, Dohmann E, Grunoud G, Vemoux T, Smith R, Hardtke C: Positional information by differential endocytosis splits auxin response to drive Arabidopsis root meristem growth. Curr Biol. 2011, 21: 1918-1923.
CAS
PubMed
Google Scholar
Mouchel C, Osmont K, Hardtke C: BRX mediates feedback between brassinosteroid levels and auxin signaling in root growth. Nature. 2006, 443 (28): 458-461.
CAS
PubMed
Google Scholar
Mouchel C, Briggs G, Hardtke C: Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root. Genes Dev. 2004, 18: 700-714.
PubMed Central
CAS
PubMed
Google Scholar
Gujas B, Alonso-Blanco C, Hardtke C: Natural Arabidopsis brx loss-of-function alleles confer root adaptation to acidic soil. Curr Biol. 2012, 22: 1952-1968.
Google Scholar
Kubesˇ M, Yang H, Richter G, Cheng Y, Młodzińska E, Wang X, Blakeslee J, Carraro N, Petrášek J, Zažímalová E, Hoyerová K, Peer W, Murphy A: The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis. Plant J. 2011, 69 (4): 640-654.
PubMed
Google Scholar
Lin R, Wang H: Two homologous ATP-binding cassette transporter proteins, AtMDR1 and AtPGP1, regulate Arabidopsis photomorphogenesis and root development by mediating polar auxin transport. Plant Physiol. 2005, 138: 949-964.
PubMed Central
CAS
PubMed
Google Scholar
Lewis D, Miller N, Splitt B, Wu G, Spalding E: Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-like ABC transporter genes. Plant Cell. 2007, 19: 1838-1850.
PubMed Central
CAS
PubMed
Google Scholar
Terasaka K, Blakeslee J, Titapiwatanakun B, Peer W, Bandyopadhyay A, Makam S, Lee O, Richards E, Murphy A, Sato F, Yazaki K: PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell. 2005, 17: 2922-2939.
PubMed Central
CAS
PubMed
Google Scholar
Wu G, Lewis D, Spalding E: Mutations in Arbidopsis multidrug resistance-like ABC transporters separate the roles of acropetal and basipetal auxin transport in lateral root development. Plant Cell. 2007, 19: 1826-1837.
PubMed Central
CAS
PubMed
Google Scholar
Zažímalová E, Murphy A, Yang H, Hoyerová K, Hošek P: Auxin transporters – why so many?. Cold Spring Harb Perspect Biology. 2010, 2: a001552.
Google Scholar
Sauer M, Robert S, Klein-Vehn J: Auxin: simply complicated. J Exp Bot. 2013, 64 (9): 2565-2577.
CAS
PubMed
Google Scholar
Caesar K, Elgass K, Chen Z, Huppenberger P, Witthoft J, Schleifenbaum F, Blatt M, Oecking C, Harter K: A fast brassinolide-regulated response pathway in the plasma membrane of Arabidopsis thaliana. Plant J. 2011, 2011 (66): 528-540.
Google Scholar
Zhao Y, Qi Z, Berkowitz G: Teaching an old hormone new tricks: cytosolic Ca2+ elevation involvement in plant brassinosteroid signal transduction cascades. Plant Physiol. 2013, 163: 555-565.
PubMed Central
CAS
PubMed
Google Scholar
Zhang X, Wang P, Akanksha G, Zhang J, Brennwald P, TerBush D, Guo W: Lethal giant larvae proteins interact with the exocyst complex and are involved in polarized exocytosis. J Cell Biol. 2005, 170 (2): 273-283.
PubMed Central
CAS
PubMed
Google Scholar
Tsukagoshi H, Busch W, Benfey P: Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell. 2010, 143: 606-616.
CAS
PubMed
Google Scholar
Liu Y, Lai N, Gao K, Chen F, Yuan L, Mi G: Ammonium inhibits primary root growth by reducing the length of meristem and elongation zone and decreasing elemental expansion rate in the root apex in Arabidopsis thaliana. PLoS One. 2013, 8 (4): e61031.
PubMed Central
CAS
PubMed
Google Scholar
Markakis M, Cnodder T, Lewandowski M, Simon D, Boron A, Balcerowicz D, Doubbo T, Taconnat L, Renou J, Hofte H, Verbelen J, Vissenberg K: Identification of genes involved in the ACC-mediated control of root cell elongation in Arabidopsis. BMC Plant Biol. 2012, 12: 208.
PubMed Central
CAS
PubMed
Google Scholar
Niu Y, Chai R, Jin G, Wang H, Tang C, Zhang Y: Responses of root architecture development to low phosphorus availability: a review. Ann Bot. 2013, 112: 391-408.
PubMed Central
CAS
PubMed
Google Scholar
Baskin T: Patterns of root growth acclimation: constant processes, changing boundaries. WIRE Dev Biol. 2013, 2: 65-73.
CAS
Google Scholar
Harberd N, Belfield E, Yasumura Y: The angiosperm gibberelling-GID1-DELLA growth regulatory mechanism: how an “inhibitor of an inhibitor” enables flexible response to fluctuating environments. Plant Cell. 2009, 21: 1328-1339.
PubMed Central
CAS
PubMed
Google Scholar
Vanneste S, Friml J: Auxin: a trigger for change in plant development. Cell. 2009, 136: 1005-1016.
CAS
PubMed
Google Scholar
Suzuki N, Koussevitzky S, Mittler R, Miller G: ROS and redox signaling in the response of plants to abiotic stress. Plant Cell Environ. 2012, 35: 259-270.
CAS
PubMed
Google Scholar
Baxter A, Mittler R, Suzuki N: ROS as key players in plant stress signaling. J Exp Botany. 2014, 65 (5): 1229-1240.
CAS
Google Scholar
Robert S, Bichet A, Grandjean O, Kierzkowski D, Satiat-Jeunemaitre B, Pelletier S, Hauser M, Hofte H, Vernhettes S: An Arabidopsis endo1,4-β-gluconase involved in cellulose synthesis undergoes regulated intracellular cycling. Plant Cell. 2005, 17: 3378-3389.
PubMed Central
CAS
PubMed
Google Scholar
Vissenberg K, Oyama M, Osato Y, Yokoyama R, Verbelen J, Nishitani K: Differential expression of AtXTH17, AtXTH18, AtXTH19, and AtXTH20, genes in Arabidopsis roots. Physiological roles in specification in cell wall construction. Plant Cell Physiol. 2005, 46 (1): 192-200.
CAS
PubMed
Google Scholar
Osato Y, Yokoyama R, Nishitani K: A principal role for AtXTH18 in Arabidopsis thaliana root growth: a functional analysis using RNAi plants. J Plant Res. 2006, 119: 153-162.
CAS
PubMed
Google Scholar
Passardi F, Tognolli M, De Meyer M, Penel C, Dunand C: Two cell wall associated peroxidases from Arabidopsis influence root elongation. Planta. 2006, 2006 (223): 965-974.
Google Scholar
Guo W, Zhao J, Li X, Qin L, Yan X, Liao H: A soybean b-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. Plant J. 2011, 66: 541-552.
CAS
PubMed
Google Scholar
Zhang J, Xu L, Wu Y, Chen X, Liu Y, Zhu S, Ding W, Wu P, Yi K: OsGLU3, a putative membrane-bound endo-1,4-beta-glucanase, is required for root cell elongation and division in rice (Oryza sativa L.). Mol Plant. 2012, 5 (1): 176-186.
PubMed
Google Scholar
Ubeda-Tomás S, Beemster G, Bennett M: Hormonal regulation of root growth: integrating local activities into global behavior. Trends Plant Sci. 2012, 17 (6): 326-331.
PubMed
Google Scholar
Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, et al: Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science. 2003, 301: 653-657.
PubMed
Google Scholar
Rosso MG, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B: An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol. 2003, 53: 247-259.
CAS
PubMed
Google Scholar
Malamy J, Benfey P: Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development. 1997, 124: 33-44.
CAS
PubMed
Google Scholar
Ivanchenko M, Coffeen W, Lomax T, Dubrovsky J: Mutations in the Digeotropica (Dgt) gene uncouple patterned cell division during lateral root initiation form proliferative cell division in the pericycle. Plant J. 2006, 46: 436-447.
CAS
PubMed
Google Scholar
Silk W, Lord E, Eckard K: Growth patterns inferred from anatomical records: empirical tests using longisections of roots in Zea mays L. Plant Physiol. 1989, 90 (2): 708-713.
PubMed Central
CAS
PubMed
Google Scholar
Rymen B, Coppens F, Dhondt S, Fiorani F, Beemster G: Kinematic Analysis of Cell Division and Expansion. Plant Developmental Biology, Methods in Molecular Biology. Edited by: Hennic L, Kohler C. 2010, Humana Press, NewYork, 203-227.
Google Scholar
Band L, Ubeda-Tomás S, Dyson R, Middleton A, Hodgman T, Owen M, Jensen O, Bennett M, King J: Growth-induced hormone dilution can explain the dynamics of plant root cell elongation. Proc Natl Acad Sci U S A. 2012, 109 (19): 7577-7582.
PubMed Central
CAS
PubMed
Google Scholar
Ron M, Dorrity M, de Lucas M, Toal T, Hernandez R, Little S, Maloof J, Kliebensten D, Brady S: Identification of novel loci regulating interspecific variation in root morphology and cellular development in Tomato. Plant Physiol. 2013, 162: 755-768.
PubMed Central
CAS
PubMed
Google Scholar
Czechowski T, Stitt M, Altmann T, Udvardi M, Scheible W: Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005, 139: 5-17.
PubMed Central
CAS
PubMed
Google Scholar
Expósito-Rodríguez M, Borges A, Borges-Pérez A, Pérez J: Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol. 2008, 8: 131.
PubMed Central
PubMed
Google Scholar
Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, Cuypers A: Normalization of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta. 2008, 227: 1343-1349.
CAS
PubMed
Google Scholar
Rieu I, Eriksson S, Powers S, Gong F, Griffiths J, Woolley L, Benlloch R, Nilsson O, Thomas S, Hedden P, Phillips A: Genetic analysis reveals that C19-GA 2-oxidation is a major gibberllin inactivation pathway in Arabidopsis. Plant Cell. 2008, 20: 2420-2436.
PubMed Central
CAS
PubMed
Google Scholar
Tromas A, Braun N, Muller P, Khodus T, Paponov I, Palme K, Ljung K, Lee J, Benfey P, Murray J, Scheres B, Perrot-Rechenmann C: The AUXIN BINDING PROTEIN 1 is required for differential auxin responses mediating root growth. PLoS One. 2009, 4 (9): e6648.
PubMed Central
PubMed
Google Scholar
Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J: qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007, 8: R19.
PubMed Central
PubMed
Google Scholar